0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Applied Computing to Support Industry: Innovation and Technology : First International Conference, ACRIT 2019, Ramadi, Iraq, September 15–16, 2019, Revised Selected Papers 

      Application of Data Mining Algorithms to Classify Biological Data: The Coffea canephora Genome Case

      other

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          EMBOSS: The European Molecular Biology Open Software Suite

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons

            Long terminal repeat retrotransposons (LTR elements) are ubiquitous eukaryotic transposable elements. They play important roles in the evolution of genes and genomes. Ever-growing amount of genomic sequences of many organisms present a great challenge to fast identifying them. That is the first and indispensable step to study their structure, distribution, functions and other biological impacts. However, until today, tools for efficient LTR retrotransposon discovery are very limited. Thus, we developed LTR_FINDER web server. Given DNA sequences, it predicts locations and structure of full-length LTR retrotransposons accurately by considering common structural features. LTR_FINDER is a system capable of scanning large-scale sequences rapidly and the first web server for ab initio LTR retrotransposon finding. We illustrate its usage and performance on the genome of Saccharomyces cerevisiae. The web server is freely accessible at http://tlife.fudan.edu.cn/ltr_finder/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons

              Background Transposable elements are abundant in eukaryotic genomes and it is believed that they have a significant impact on the evolution of gene and chromosome structure. While there are several completed eukaryotic genome projects, there are only few high quality genome wide annotations of transposable elements. Therefore, there is a considerable demand for computational identification of transposable elements. LTR retrotransposons, an important subclass of transposable elements, are well suited for computational identification, as they contain long terminal repeats (LTRs). Results We have developed a software tool LTRharvest for the de novo detection of full length LTR retrotransposons in large sequence sets. LTRharvest efficiently delivers high quality annotations based on known LTR transposon features like length, distance, and sequence motifs. A quality validation of LTRharvest against a gold standard annotation for Saccharomyces cerevisae and Drosophila melanogaster shows a sensitivity of up to 90% and 97% and specificity of 100% and 72%, respectively. This is comparable or slightly better than annotations for previous software tools. The main advantage of LTRharvest over previous tools is (a) its ability to efficiently handle large datasets from finished or unfinished genome projects, (b) its flexibility in incorporating known sequence features into the prediction, and (c) its availability as an open source software. Conclusion LTRharvest is an efficient software tool delivering high quality annotation of LTR retrotransposons. It can, for example, process the largest human chromosome in approx. 8 minutes on a Linux PC with 4 GB of memory. Its flexibility and small space and run-time requirements makes LTRharvest a very competitive candidate for future LTR retrotransposon annotation projects. Moreover, the structured design and implementation and the availability as open source provides an excellent base for incorporating novel concepts to further improve prediction of LTR retrotransposons.
                Bookmark

                Author and book information

                Book Chapter
                2017
                August 17 2017
                : 156-170
                10.1007/978-3-319-66562-7_12
                929fab87-28b5-4533-be95-586b0f677705
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,066

                Cited by5