28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      The Prokaryotes 

      The Genus Brucella

      reference
      ,
      Springer New York

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references528

          • Record: found
          • Abstract: found
          • Article: not found

          The genome sequence of Rickettsia prowazekii and the origin of mitochondria.

          We describe here the complete genome sequence (1,111,523 base pairs) of the obligate intracellular parasite Rickettsia prowazekii, the causative agent of epidemic typhus. This genome contains 834 protein-coding genes. The functional profiles of these genes show similarities to those of mitochondrial genes: no genes required for anaerobic glycolysis are found in either R. prowazekii or mitochondrial genomes, but a complete set of genes encoding components of the tricarboxylic acid cycle and the respiratory-chain complex is found in R. prowazekii. In effect, ATP production in Rickettsia is the same as that in mitochondria. Many genes involved in the biosynthesis and regulation of biosynthesis of amino acids and nucleosides in free-living bacteria are absent from R. prowazekii and mitochondria. Such genes seem to have been replaced by homologues in the nuclear (host) genome. The R. prowazekii genome contains the highest proportion of non-coding DNA (24%) detected so far in a microbial genome. Such non-coding sequences may be degraded remnants of 'neutralized' genes that await elimination from the genome. Phylogenetic analyses indicate that R. prowazekii is more closely related to mitochondria than is any other microbe studied so far.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The composite genome of the legume symbiont Sinorhizobium meliloti.

            The scarcity of usable nitrogen frequently limits plant growth. A tight metabolic association with rhizobial bacteria allows legumes to obtain nitrogen compounds by bacterial reduction of dinitrogen (N2) to ammonium (NH4+). We present here the annotated DNA sequence of the alpha-proteobacterium Sinorhizobium meliloti, the symbiont of alfalfa. The tripartite 6.7-megabase (Mb) genome comprises a 3.65-Mb chromosome, and 1.35-Mb pSymA and 1.68-Mb pSymB megaplasmids. Genome sequence analysis indicates that all three elements contribute, in varying degrees, to symbiosis and reveals how this genome may have emerged during evolution. The genome sequence will be useful in understanding the dynamics of interkingdom associations and of life in soil environments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Serial triggering of many T-cell receptors by a few peptide-MHC complexes.

              T lymphocytes can recognize and be activated by a very small number of complexes of peptide with major histocompatibility complex (MHC) molecules displayed on the surface of antigen-presenting cells (APCs). The interaction between the T-cell receptor (TCR) and its ligand has low affinity and high off-rate. Both findings suggest that an extremely small number of TCRs must be engaged in interaction with APCs and raise the question of how so few receptors can transduce an activation signal. Here we show that a small number of peptide-MHC complexes can achieve a high TCR occupancy, because a single complex can serially engage and trigger up to approximately 200 TCRs. Furthermore, TCR occupancy is proportional to the T cell's biological response. Our findings suggest that the low affinity of the TCR can be instrumental in enabling a small number of antigenic complexes to be detected.
                Bookmark

                Author and book information

                Book Chapter
                2006
                : 315-456
                10.1007/0-387-30745-1_17
                7fd935c5-1fa2-4b8c-a3e3-d8bacf3dae51
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,225

                Cited by13