11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Williams Textbook of Endocrinology 

      Disorders of Sex Development

      edited_book
      ,
      Elsevier

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references503

          • Record: found
          • Abstract: found
          • Article: not found

          Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones.

          Significant advances have taken place in our knowledge of the enzymes involved in steroid hormone biosynthesis since the last comprehensive review in 1988. Major developments include the cloning, identification, and characterization of multiple isoforms of 3beta-hydroxysteroid dehydrogenase, which play a critical role in the biosynthesis of all steroid hormones and 17beta-hydroxysteroid dehydrogenase where specific isoforms are essential for the final step in active steroid hormone biosynthesis. Advances have taken place in our understanding of the unique manner that determines tissue-specific expression of P450aromatase through the utilization of alternative promoters. In recent years, evidence has been obtained for the expression of steroidogenic enzymes in the nervous system and in cardiac tissue, indicating that these tissues may be involved in the biosynthesis of steroid hormones acting in an autocrine or paracrine manner. This review presents a detailed description of the enzymes involved in the biosynthesis of active steroid hormones, with emphasis on the human and mouse enzymes and their expression in gonads, adrenal glands, and placenta.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              X-inactivation profile reveals extensive variability in X-linked gene expression in females.

              In female mammals, most genes on one X chromosome are silenced as a result of X-chromosome inactivation. However, some genes escape X-inactivation and are expressed from both the active and inactive X chromosome. Such genes are potential contributors to sexually dimorphic traits, to phenotypic variability among females heterozygous for X-linked conditions, and to clinical abnormalities in patients with abnormal X chromosomes. Here, we present a comprehensive X-inactivation profile of the human X chromosome, representing an estimated 95% of assayable genes in fibroblast-based test systems. In total, about 15% of X-linked genes escape inactivation to some degree, and the proportion of genes escaping inactivation differs dramatically between different regions of the X chromosome, reflecting the evolutionary history of the sex chromosomes. An additional 10% of X-linked genes show variable patterns of inactivation and are expressed to different extents from some inactive X chromosomes. This suggests a remarkable and previously unsuspected degree of expression heterogeneity among females.
                Bookmark

                Author and book information

                Book Chapter
                2011
                : 868-934
                10.1016/B978-1-4377-0324-5.00023-7
                608369da-cbc1-4200-9c8d-7d0520b82ea2
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,988

                Cited by8