0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Novel Methods and Pathways in Cancer Glycobiology Research 

      Measuring the multifaceted roles of mucin-domain glycoproteins in cancer

      edited-book

      Read this book at

      Publisher
      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references198

          • Record: found
          • Abstract: found
          • Article: not found

          MSFragger: ultrafast and comprehensive peptide identification in shotgun proteomics

          There is a need to better understand and handle the “dark matter” of proteomics – the vast diversity of post-translational and chemical modifications that are unaccounted in a typical analysis and thus remain unidentified. We present a novel fragment-ion indexing method, and its implementation in peptide identification tool MSFragger, that enables an over 100-fold improvement in speed over most existing tools. Using some of the largest proteomic datasets to date, we demonstrate how MSFragger empowers the open database search concept for comprehensive identification of peptides and all their modified forms, uncovering dramatic differences in the modification rates across experimental samples and conditions. We further illustrate its utility using protein-RNA crosslinked peptide data, and using affinity purification experiments where we observe on average a 300% increase in the number of identified spectra for enriched proteins. We also discuss the benefits of open searching for improved false discovery rate estimation in proteomics.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mucins in cancer: protection and control of the cell surface.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene expression profiling identifies clinically relevant subtypes of prostate cancer.

              Prostate cancer, a leading cause of cancer death, displays a broad range of clinical behavior from relatively indolent to aggressive metastatic disease. To explore potential molecular variation underlying this clinical heterogeneity, we profiled gene expression in 62 primary prostate tumors, as well as 41 normal prostate specimens and nine lymph node metastases, using cDNA microarrays containing approximately 26,000 genes. Unsupervised hierarchical clustering readily distinguished tumors from normal samples, and further identified three subclasses of prostate tumors based on distinct patterns of gene expression. High-grade and advanced stage tumors, as well as tumors associated with recurrence, were disproportionately represented among two of the three subtypes, one of which also included most lymph node metastases. To further characterize the clinical relevance of tumor subtypes, we evaluated as surrogate markers two genes differentially expressed among tumor subgroups by using immunohistochemistry on tissue microarrays representing an independent set of 225 prostate tumors. Positive staining for MUC1, a gene highly expressed in the subgroups with "aggressive" clinicopathological features, was associated with an elevated risk of recurrence (P = 0.003), whereas strong staining for AZGP1, a gene highly expressed in the other subgroup, was associated with a decreased risk of recurrence (P = 0.0008). In multivariate analysis, MUC1 and AZGP1 staining were strong predictors of tumor recurrence independent of tumor grade, stage, and preoperative prostate-specific antigen levels. Our results suggest that prostate tumors can be usefully classified according to their gene expression patterns, and these tumor subtypes may provide a basis for improved prognostication and treatment stratification.
                Bookmark

                Author and book information

                Book Chapter
                2023
                : 83-121
                10.1016/bs.acr.2022.09.001
                22de7df7-3073-485f-b8fd-c8f218bb8bf9
                History

                Comments

                Comment on this book

                Book chapters

                Similar content5,042

                Cited by1