2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found

      Excitotoxicity and Neurological Disorders: Involvement of Membrane Phospholipids

      edited_book
      ,
      Elsevier

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references296

          • Record: found
          • Abstract: not found
          • Article: not found

          Glutamate neurotoxicity and diseases of the nervous system.

          D Choi (1988)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heteromeric NMDA receptors: molecular and functional distinction of subtypes.

            The N-methyl D-aspartate (NMDA) receptor subtype of glutamate-gated ion channels possesses high calcium permeability and unique voltage-dependent sensitivity to magnesium and is modulated by glycine. Molecular cloning identified three complementary DNA species of rat brain, encoding NMDA receptor subunits NMDAR2A (NR2A), NR2B, and NR2C, which are 55 to 70% identical in sequence. These are structurally related, with less than 20% sequence identity, to other excitatory amino acid receptor subunits, including the NMDA receptor subunit NMDAR1 (NR1). Upon expression in cultured cells, the new subunits yielded prominent, typical glutamate- and NMDA-activated currents only when they were in heteromeric configurations with NR1. NR1-NR2A and NR1-NR2C channels differed in gating behavior and magnesium sensitivity. Such heteromeric NMDA receptor subtypes may exist in neurons, since NR1 messenger RNA is synthesized throughout the mature rat brain, while NR2 messenger RNA show a differential distribution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Studies and perspectives of protein kinase C.

              Protein kinase C, an enzyme that is activated by the receptor-mediated hydrolysis of inositol phospholipids, relays information in the form of a variety of extracellular signals across the membrane to regulate many Ca2+-dependent processes. At an early phase of cellular responses, the enzyme appears to have a dual effect, providing positive forward as well as negative feedback controls over various steps of its own and other signaling pathways, such as the receptors that are coupled to inositol phospholipid hydrolysis and those of some growth factors. In biological systems, a positive signal is frequently followed by immediate negative feedback regulation. Such a novel role of this protein kinase system seems to give a logical basis for clarifying the biochemical mechanism of signal transduction, and to add a new dimension essential to our understanding of cell-to-cell communication.
                Bookmark

                Author and book information

                Book Chapter
                1994
                : 267-323
                10.1016/S0074-7742(08)60306-2
                22d4a79c-d0aa-401a-8b7b-c6b1f1e1d819
                History

                Comments

                Comment on this book

                Book chapters

                Similar content3,038

                Cited by20