Scar Formation: Cellular Mechanisms – ScienceOpen
6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Book Chapter: not found
      Textbook on Scar Management : State of the Art Management and Emerging Technologies 

      Scar Formation: Cellular Mechanisms

      other
      ,
      Springer International Publishing

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fibroblasts are key players in the maintenance of skin homeostasis and in orchestrating physiological tissue repair. Fibroblasts secrete and are embedded in a sophisticated extracellular matrix, and a complex and interactive dialogue exists between fibroblasts and their microenvironment. In addition to the secretion of the extracellular matrix, fibroblasts and myofibroblasts secrete extracellular matrix remodeling enzymes, matrix metalloproteinases and their inhibitors, and tissue inhibitors of metalloproteinases and are thus able to remodel the extracellular matrix. Myofibroblasts and their microenvironment form a network that evolves during tissue repair. This network has reciprocal actions affecting cell differentiation, cell proliferation, cell quiescence, or apoptosis and has actions on growth factor bioavailability by binding, sequestration, and activation. Mechanical forces also play a role in regulating the myofibroblast phenotype as cells are subjected to mechanical stress and mechanical signaling is activated. Innervation is also involved in both skin repair processes and differentiation of myofibroblasts. In pathological situations, for example, in excessive scarring, the dialogue between myofibroblasts and their microenvironment can be altered or disrupted, leading to defects in tissue repair or to pathological scarring, such as that seen in hypertrophic scars. Better understanding of the intimate dialogue between myofibroblasts and their local microenvironment is needed and will be important in aiding the identification of new therapeutic targets and discovery of new drugs to treat or prevent aberrant tissue repair and scarring.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Wound Healing: A Cellular Perspective

          Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Fibroblasts and myofibroblasts in wound healing

            (Myo)fibroblasts are key players for maintaining skin homeostasis and for orchestrating physiological tissue repair. (Myo)fibroblasts are embedded in a sophisticated extracellular matrix (ECM) that they secrete, and a complex and interactive dialogue exists between (myo)fibroblasts and their microenvironment. In addition to the secretion of the ECM, (myo)fibroblasts, by secreting matrix metalloproteinases and tissue inhibitors of metalloproteinases, are able to remodel this ECM. (Myo)fibroblasts and their microenvironment form an evolving network during tissue repair, with reciprocal actions leading to cell differentiation, proliferation, quiescence, or apoptosis, and actions on growth factor bioavailability by binding, sequestration, and activation. In addition, the (myo)fibroblast phenotype is regulated by mechanical stresses to which they are subjected and thus by mechanical signaling. In pathological situations (excessive scarring or fibrosis), or during aging, this dialogue between the (myo)fibroblasts and their microenvironment may be altered or disrupted, leading to repair defects or to injuries with damaged and/or cosmetic skin alterations such as wrinkle development. The intimate dialogue between the (myo)fibroblasts and their microenvironment therefore represents a fascinating domain that must be better understood in order not only to characterize new therapeutic targets and drugs able to prevent or treat pathological developments but also to interfere with skin alterations observed during normal aging or premature aging induced by a deleterious environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases

              Organ fibrosis is a lethal outcome of autoimmune rheumatic diseases such as systemic sclerosis. Myofibroblasts are scar-forming cells that are ultimately responsible for the excessive synthesis, deposition and remodelling of extracellular matrix proteins in fibrosis. Advances have been made in our understanding of the mechanisms that keep myofibroblasts in an activated state and control myofibroblast functions. However, the mechanisms that help myofibroblasts to persist in fibrotic tissues remain poorly understood. Myofibroblasts evade apoptosis by activating molecular mechanisms in response to pro-survival biomechanical and growth factor signals from the fibrotic microenvironment, which can ultimately lead to the acquisition of a senescent phenotype. Growing evidence suggests that myofibroblasts and senescent myofibroblasts, rather than being resistant to apoptosis, are actually primed for apoptosis owing to concomitant activation of cell death signalling pathways; these cells are poised to apoptose when survival pathways are inhibited. This knowledge of apoptotic priming has paved the way for new therapies that trigger apoptosis in myofibroblasts by blocking pro-survival mechanisms, target senescent myofibroblast for apoptosis or promote the reprogramming of myofibroblasts into scar-resolving cells. These novel strategies are not only poised to prevent progressive tissue scarring, but also have the potential to reverse established fibrosis and to regenerate chronically injured tissues.
                Bookmark

                Author and book information

                Book Chapter
                2020
                December 08 2020
                : 19-26
                10.1007/978-3-030-44766-3_3
                10a4a791-dc38-4024-bbe5-f794bbbba976
                History

                Comments

                Comment on this book

                Book chapters

                Similar content177

                Cited by3