4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found

      Ecology and Conservation of Passalidae

      other
      Springer International Publishing

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Wood decomposition as influenced by invertebrates.

          The diversity and habitat requirements of invertebrates associated with dead wood have been the subjects of hundreds of studies in recent years but we still know very little about the ecological or economic importance of these organisms. The purpose of this review is to examine whether, how and to what extent invertebrates affect wood decomposition in terrestrial ecosystems. Three broad conclusions can be reached from the available literature. First, wood decomposition is largely driven by microbial activity but invertebrates also play a significant role in both temperate and tropical environments. Primary mechanisms include enzymatic digestion (involving both endogenous enzymes and those produced by endo- and ectosymbionts), substrate alteration (tunnelling and fragmentation), biotic interactions and nitrogen fertilization (i.e. promoting nitrogen fixation by endosymbiotic and free-living bacteria). Second, the effects of individual invertebrate taxa or functional groups can be accelerative or inhibitory but the cumulative effect of the entire community is generally to accelerate wood decomposition, at least during the early stages of the process (most studies are limited to the first 2-3 years). Although methodological differences and design limitations preclude meta-analysis, studies aimed at quantifying the contributions of invertebrates to wood decomposition commonly attribute 10-20% of wood loss to these organisms. Finally, some taxa appear to be particularly influential with respect to promoting wood decomposition. These include large wood-boring beetles (Coleoptera) and termites (Termitoidae), especially fungus-farming macrotermitines. The presence or absence of these species may be more consequential than species richness and the influence of invertebrates is likely to vary biogeographically.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies.

            Litterbags have been utilized in soil ecology for about 50 years. They are useful because they confine organic material and thus enable the study of decomposition dynamics (mass loss and/or nutrient loss through time, colonization by soil biota) in situ, i.e. under field conditions. Researchers can easily restrict or permit access to certain size classes of soil fauna to determine their contribution to litter mass loss by choosing adequate mesh size or applying specific biocides. In particular, the mesofauna has received much attention since it comprises two very abundant and diverse microarthropod groups, the Collembola (springtails) and Acari (mites). We comprehensively searched the literature from the mid-1960s to the end of 2005 for reports on litterbag experiments investigating the role of microarthropods in terrestrial decomposition. Thirty papers reporting 101 experiments satisfied our selection criteria and were included in the database. Our meta-analysis revealed that microarthropods have a moderate but significant effect on mass loss. We discuss in detail the interactions of the microarthropod effect with study characteristics such as experimental design (e.g. number of bags, duration of experiment), type of exposed organic matter, climatic zone and land use of the study site. No publication bias was detected; however, we noticed a significant decrease in the microarthropod effect with publication year, indicating that, in the first decades of litterbag use, soil zoologists may have studied "promising" sites with a higher a priori probability of positive microarthropod effects on litter mass loss. A general weakness is that the treatments differ not only with respect to the presence or absence of microarthropods, but also with regard to mesh size (small to exclude microarthropods, wide to permit their access) or presence (to exclude microarthropods) and absence (to permit their access) of an insecticide. Consequently, the difference between the decomposition rates in the treatments is not a pure microarthropod effect but will be influenced by the additive effects of mesh size and insecticide. The relative contribution of the "true" microarthropod effect remains unknown without additional treatments controlling for the differential mesh size/insecticide effect. A meta-analysis including only those studies using different mesh size and for which the data were corrected by subtracting an estimated mesh size effect based on data from the literature yielded a significantly negative microarthropod effect on litter decomposition. These results cast doubt on the widely accepted hypothesis that microarthropods generally exert a positive effect on litter mass loss. We conclude that after 40 years of litterbag studies our knowledge on the role of microarthropods in litter mass loss remains limited and that the inclusion of a third treatment in future studies is a promising way to retain litterbags as a meaningful tool of soil biological studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus.

              Coarse woody debris is an important biomass pool in forest ecosystems that numerous groups of insects have evolved to take advantage of. These insects are ecologically important and represent useful natural analogs for biomass to biofuel conversion. Using a range of molecular approaches combined with microelectrode measurements of oxygen, we have characterized the gut microbiome and physiology of Odontotaenius disjunctus, a wood-feeding beetle native to the eastern United States. We hypothesized that morphological and physiological differences among gut regions would correspond to distinct microbial populations and activities. In fact, significantly different communities were found in the foregut (FG), midgut (MG)/posterior hindgut (PHG) and anterior hindgut (AHG), with Actinobacteria and Rhizobiales being more abundant toward the FG and PHG. Conversely, fermentative bacteria such as Bacteroidetes and Clostridia were more abundant in the AHG, and also the sole region where methanogenic Archaea were detected. Although each gut region possessed an anaerobic core, micron-scale profiling identified radial gradients in oxygen concentration in all regions. Nitrogen fixation was confirmed by (15)N2 incorporation, and nitrogenase gene (nifH) expression was greatest in the AHG. Phylogenetic analysis of nifH identified the most abundant transcript as related to Ni-Fe nitrogenase of a Bacteroidetes species, Paludibacter propionicigenes. Overall, we demonstrate not only a compartmentalized microbiome in this beetle digestive tract but also sharp oxygen gradients that may permit aerobic and anaerobic metabolism to occur within the same regions in close proximity. We provide evidence for the microbial fixation of N2 that is important for this beetle to subsist on woody biomass.
                Bookmark

                Author and book information

                Book Chapter
                2018
                May 22 2018
                : 129-147
                10.1007/978-3-319-75937-1_3
                d336cdb6-af18-41df-9b00-42ea782bea06
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,843

                Cited by5