Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation.

      Immunity
      Animals, Antibody-Producing Cells, B-Lymphocytes, physiology, Cell Differentiation, DNA-Binding Proteins, Gene Expression Profiling, Gene Expression Regulation, Mice, Nuclear Proteins, Organelles, ultrastructure, Plasma Cells, Repressor Proteins, Transcription Factors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The differentiation of B cells into immunoglobulin-secreting plasma cells is controlled by two transcription factors, Blimp-1 and XBP1. By gene expression profiling, we defined a set of genes whose induction during mouse plasmacytic differentiation is dependent on Blimp-1 and/or XBP1. Blimp-1-deficient B cells failed to upregulate most plasma cell-specific genes, including xbp1. Differentiating xbp1-deficient B cells induced Blimp-1 normally but failed to upregulate genes encoding many secretory pathway components. Conversely, ectopic expression of XBP1 induced a wide spectrum of secretory pathway genes and physically expanded the endoplasmic reticulum. In addition, XBP1 increased cell size, lysosome content, mitochondrial mass and function, ribosome numbers, and total protein synthesis. Thus, XBP1 coordinates diverse changes in cellular structure and function resulting in the characteristic phenotype of professional secretory cells.

          Related collections

          Author and article information

          Comments

          Comment on this article