Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A cis-Acting Diversification Activator Both Necessary and Sufficient for AID-Mediated Hypermutation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypermutation of the immunoglobulin ( Ig) genes requires Activation Induced cytidine Deaminase (AID) and transcription, but it remains unclear why other transcribed genes of B cells do not mutate. We describe a reporter transgene crippled by hypermutation when inserted into or near the Ig light chain ( IgL) locus of the DT40 B cell line yet stably expressed when inserted into other chromosomal positions. Step-wise deletions of the IgL locus revealed that a sequence extending for 9.8 kilobases downstream of the IgL transcription start site confers the hypermutation activity. This sequence, named DIVAC for diversification activator, efficiently activates hypermutation when inserted at non-Ig loci. The results significantly extend previously reported findings on AID-mediated gene diversification. They show by both deletion and insertion analyses that cis-acting sequences predispose neighboring transcription units to hypermutation.

          Author Summary

          It remains an open question how AID-mediated gene diversification is targeted to the immunoglobulin loci. Here we define a cis-acting sequence, named DIVAC for diversification activator, which is required for hypermutation of the Ig light chain gene and sufficient to activate hypermutation at various non-Ig loci in the DT40 B cell line. DIVAC is composed of multiple interacting sequences and able to work over considerable distances both upstream and downstream of its target gene. This work provides the first conclusive evidence that AID-mediated gene diversification is targeted to the Ig loci by cis-acting sequences. The conservation of AID-mediated Ig gene diversification during vertebrate evolution suggests that DIVACs also play a role in gene conversion, hypermutation, and switch recombination in mammalian B cells. The findings should be of general interest not only for molecular immunology and the pathogenesis of B cell lymphomas but also the whole field of biology as a unique example of how locus-specific gene diversification is controlled. The described experimental system offers unique advantages to further clarify the molecular mechanism of DIVAC.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme.

          Induced overexpression of AID in CH12F3-2 B lymphoma cells augmented class switching from IgM to IgA without cytokine stimulation. AID deficiency caused a complete defect in class switching and showed a hyper-IgM phenotype with enlarged germinal centers containing strongly activated B cells before or after immunization. AID-/- spleen cells stimulated in vitro with LPS and cytokines failed to undergo class switch recombination although they expressed germline transcripts. Immunization of AID-/- chimera with 4-hydroxy-3-nitrophenylacetyl (NP) chicken gamma-globulin induced neither accumulation of mutations in the NP-specific variable region gene nor class switching. These results suggest that AID may be involved in regulation or catalysis of the DNA modification step of both class switching and somatic hypermutation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two levels of protection for the B cell genome during somatic hypermutation.

            Somatic hypermutation introduces point mutations into immunoglobulin genes in germinal centre B cells during an immune response. The reaction is initiated by cytosine deamination by the activation-induced deaminase (AID) and completed by error-prone processing of the resulting uracils by mismatch and base excision repair factors. Somatic hypermutation represents a threat to genome integrity and it is not known how the B cell genome is protected from the mutagenic effects of somatic hypermutation nor how often these protective mechanisms fail. Here we show, by extensive sequencing of murine B cell genes, that the genome is protected by two distinct mechanisms: selective targeting of AID and gene-specific, high-fidelity repair of AID-generated uracils. Numerous genes linked to B cell tumorigenesis, including Myc, Pim1, Pax5, Ocab (also called Pou2af1), H2afx, Rhoh and Ebf1, are deaminated by AID but escape acquisition of most mutations through the combined action of mismatch and base excision repair. However, approximately 25% of expressed genes analysed were not fully protected by either mechanism and accumulated mutations in germinal centre B cells. Our results demonstrate that AID acts broadly on the genome, with the ultimate distribution of mutations determined by a balance between high-fidelity and error-prone DNA repair.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation.

              AID-mediated deamination of dC residues within the immunoglobulin locus generates dU:dG lesions whose resolution leads to class-switch recombination and somatic hypermutation. The dU:dG pair is a mismatch and comprises a base foreign to DNA and is, thus, recognized by proteins from both base excision (uracil-DNA glycosylase, UNG) and mismatch recognition (MSH2/MSH6) pathways. Strikingly, while antibody diversification is perturbed by single deficiency in either UNG or MSH2, combined UNG/MSH2 deficiency leads to a total ablation both of switch recombination and of IgV hypermutation at dA:dT pairs. The initiating dU:dG lesions appear not to be recognized and are simply replicated over. The results indicate that the major pathway for switch recombination occurs through uracil excision with mismatch recognition of dU:dG providing a backup; the second phase of hypermutation (essentially introducing mutations solely at dA:dT pairs) is triggered by mismatch recognition of the dU:dG lesion with uracil excision providing a backup.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                January 2009
                January 2009
                9 January 2009
                : 5
                : 1
                : e1000332
                Affiliations
                [1]Institute for Molecular Radiobiology, Helmholtz Center Munich, Neuherberg, Germany
                The Jackson Laboratory, United States of America
                Author notes
                [¤]

                Current address: Independent researcher, Gunta-Stoelzl Strasse 6, 80807 Munich, Germany

                Conceived and designed the experiments: AB VB SS US RBC HA JMB. Performed the experiments: AB VB SS US RBC HA. Analyzed the data: AB VB SS US RBC HA JMB. Contributed reagents/materials/analysis tools: JMB. Wrote the paper: AB VB RBC JMB.

                Article
                08-PLGE-RA-0380R3
                10.1371/journal.pgen.1000332
                2607555
                19132090
                e890accd-559a-4ee3-98fb-88da0051eb53
                Blagodatski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 4 April 2008
                : 9 December 2008
                Page count
                Pages: 11
                Categories
                Research Article
                Biotechnology
                Cell Biology
                Genetics and Genomics/Genetics of the Immune System
                Immunology/Genetics of the Immune System
                Molecular Biology

                Genetics
                Genetics

                Comments

                Comment on this article