Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL.

      Cancer research
      Anilides, pharmacology, therapeutic use, Antibodies, Monoclonal, Antibodies, Monoclonal, Humanized, Antineoplastic Agents, Breast Neoplasms, drug therapy, genetics, metabolism, pathology, Cell Line, Tumor, Clone Cells, Drug Antagonism, Drug Resistance, Neoplasm, drug effects, Female, Genes, erbB-2, Humans, Oncogene Proteins, antagonists & inhibitors, biosynthesis, Protein Kinase Inhibitors, Proto-Oncogene Proteins, Quinazolines, Quinolines, RNA, Small Interfering, Receptor Protein-Tyrosine Kinases, Receptors, Estrogen

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          HER2-directed therapies, such as trastuzumab and lapatinib, are important treatments for breast cancer. However, some tumors do not respond or develop resistance to these agents. We isolated and characterized multiple lapatinib-resistant, HER2-positive, estrogen receptor (ER)-positive breast cancer clones derived from lapatinib-sensitive BT474 cells by chronic exposure to lapatinib. We show overexpression of AXL as a novel mechanism of acquired resistance to HER2-targeted agents in these models. GSK1363089 (foretinib), a multikinase inhibitor of AXL, MET, and vascular endothelial growth factor receptor currently in phase II clinical trials, restores lapatinib and trastuzumab sensitivity in these resistant cells that exhibit increased AXL expression. Furthermore, small interfering RNA to AXL, estrogen deprivation, or fulvestrant, an ER antagonist, decreases AXL expression and restores sensitivity to lapatinib in these cells. Taken together, these data provide scientific evidence to assess the expression of AXL in HER2-positive, ER-positive patients who have progressed on either lapatinib or trastuzumab and to test the combination of HER2-targeted agents and GSK1363089 in the clinic.

          Related collections

          Author and article information

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content1,457

          Cited by167