Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
164
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara)

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Lepidosauria (lizards, snakes, tuatara) is a globally distributed and ecologically important group of over 9,000 reptile species. The earliest fossil records are currently restricted to the Late Triassic and often dated to 227 million years ago (Mya). As these early records include taxa that are relatively derived in their morphology (e.g. Brachyrhinodon), an earlier unknown history of Lepidosauria is implied. However, molecular age estimates for Lepidosauria have been problematic; dates for the most recent common ancestor of all lepidosaurs range between approximately 226 and 289 Mya whereas estimates for crown-group Squamata (lizards and snakes) vary more dramatically: 179 to 294 Mya. This uncertainty restricts inferences regarding the patterns of diversification and evolution of Lepidosauria as a whole.

          Results

          Here we report on a rhynchocephalian fossil from the Middle Triassic of Germany (Vellberg) that represents the oldest known record of a lepidosaur from anywhere in the world. Reliably dated to 238–240 Mya, this material is about 12 million years older than previously known lepidosaur records and is older than some but not all molecular clock estimates for the origin of lepidosaurs. Using RAG1 sequence data from 76 extant taxa and the new fossil specimens two of several calibrations, we estimate that the most recent common ancestor of Lepidosauria lived at least 242 Mya (238–249.5), and crown-group Squamata originated around 193 Mya (176–213).

          Conclusion

          A Early/Middle Triassic date for the origin of Lepidosauria disagrees with previous estimates deep within the Permian and suggests the group evolved as part of the faunal recovery after the end-Permain mass extinction as the climate became more humid. Our origin time for crown-group Squamata coincides with shifts towards warmer climates and dramatic changes in fauna and flora. Most major subclades within Squamata originated in the Cretaceous postdating major continental fragmentation. The Vellberg fossil locality is expected to become an important resource for providing a more balanced picture of the Triassic and for bridging gaps in the fossil record of several other major vertebrate groups.

          Related collections

          Most cited references203

          • Record: found
          • Abstract: found
          • Article: not found

          MrBayes 3: Bayesian phylogenetic inference under mixed models.

          MrBayes 3 performs Bayesian phylogenetic analysis combining information from different data partitions or subsets evolving under different stochastic evolutionary models. This allows the user to analyze heterogeneous data sets consisting of different data types-e.g. morphological, nucleotide, and protein-and to explore a wide variety of structured models mixing partition-unique and shared parameters. The program employs MPI to parallelize Metropolis coupling on Macintosh or UNIX clusters.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            BEAST: Bayesian evolutionary analysis by sampling trees

            Background The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented. Results BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at under the GNU LGPL license. Conclusion BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building.

              We present SeaView version 4, a multiplatform program designed to facilitate multiple alignment and phylogenetic tree building from molecular sequence data through the use of a graphical user interface. SeaView version 4 combines all the functions of the widely used programs SeaView (in its previous versions) and Phylo_win, and expands them by adding network access to sequence databases, alignment with arbitrary algorithm, maximum-likelihood tree building with PhyML, and display, printing, and copy-to-clipboard of rooted or unrooted, binary or multifurcating phylogenetic trees. In relation to the wide present offer of tools and algorithms for phylogenetic analyses, SeaView is especially useful for teaching and for occasional users of such software. SeaView is freely available at http://pbil.univ-lyon1.fr/software/seaview.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Evol Biol
                BMC Evol. Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2013
                25 September 2013
                : 13
                : 208
                Affiliations
                [1 ]Research Department of Cell and Developmental Biology, Anatomy Building, UCL, University College London, Gower Street, London WCIE 6BT, UK
                [2 ]School of Earth and Environmental Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
                [3 ]University of Gothenburg, Department of Plant and Environmental Sciences, Gothenburg, Sweden
                [4 ]Museum für Naturkunde – Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin, Germany
                [5 ]Staatliches Museum für Naturkunde, Rosenstein 1, D-70191, Stuttgart, Germany
                [6 ]Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
                Article
                1471-2148-13-208
                10.1186/1471-2148-13-208
                4016551
                24063680
                aa43b20a-a5b4-4528-a98b-fbd8ddd8e2d8
                Copyright © 2013 Jones et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 April 2013
                : 2 September 2013
                Categories
                Research Article

                Evolutionary Biology
                dating,fossil,jurassic,lepidosauria,lizards,molecular,origin,squamata,triassic,tuatara
                Evolutionary Biology
                dating, fossil, jurassic, lepidosauria, lizards, molecular, origin, squamata, triassic, tuatara

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content329

                Cited by120

                Most referenced authors1,314