Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Follicular helper T cells are required for systemic autoimmunity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Production of high-affinity pathogenic autoantibodies appears to be central to the pathogenesis of lupus. Because normal high-affinity antibodies arise from germinal centers (GCs), aberrant selection of GC B cells, caused by either failure of negative selection or enhanced positive selection by follicular helper T (T FH) cells, is a plausible explanation for these autoantibodies. Mice homozygous for the san allele of Roquin, which encodes a RING-type ubiquitin ligase, develop GCs in the absence of foreign antigen, excessive T FH cell numbers, and features of lupus. We postulated a positive selection defect in GCs to account for autoantibodies. We first demonstrate that autoimmunity in Roquin san/san ( sanroque) mice is GC dependent: deletion of one allele of Bcl6 specifically reduces the number of GC cells, ameliorating pathology. We show that Roquin san acts autonomously to cause accumulation of T FH cells. Introduction of a null allele of the signaling lymphocyte activation molecule family adaptor Sap into the sanroque background resulted in a substantial and selective reduction in sanroque T FH cells, and abrogated formation of GCs, autoantibody formation, and renal pathology. In contrast, adoptive transfer of sanroque T FH cells led to spontaneous GC formation. These findings identify T FH dysfunction within GCs and aberrant positive selection as a pathway to systemic autoimmunity.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus.

          M Hochberg (1997)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A fundamental role for interleukin-21 in the generation of T follicular helper cells.

            T cell help to B cells is a fundamental property of adaptive immunity, yet only recently have many of the cellular and molecular mechanisms of T cell help emerged. T follicular helper (Tfh) cells are the CD4(+) T helper cells that provide cognate help to B cells for high-affinity antibody production in germinal centers (GC). Tfh cells produce interleukin-21 (IL-21), and we show that IL-21 was necessary for GC formation. However, the central role of IL-21 in GC formation reflected its effects on Tfh cell generation rather than on B cells. Expression of the inducible costimulator (ICOS) was necessary for optimal production of IL-21, indicative of interplay between these two Tfh cell-expressed molecules. Finally, we demonstrate that IL-21's costimulatory capacity for T helper cell differentiation operated at the level of the T cell receptor signalosome through Vav1, a signaling molecule that controls T cell helper function. This study reveals a previously unappreciated role for Tfh cells in the formation of the GC and isotype switching through a CD4(+) T cell-intrinsic requirement for IL-21.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human blood IgM "memory" B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire.

              The human peripheral B-cell compartment displays a large population of immunoglobulin M-positive, immunoglobulin D-positive CD27(+) (IgM(+)IgD(+)CD27(+)) "memory" B cells carrying a mutated immunoglobulin receptor. By means of phenotypic analysis, complementarity-determining region 3 (CDR3) spectratyping during a T-independent response, and gene-expression profiling of the different blood and splenic B-cell subsets, we show here that blood IgM(+)IgD(+)CD27(+) cells correspond to circulating splenic marginal zone B cells. Furthermore, analysis of this peripheral subset in healthy children younger than 2 years shows that these B cells develop and mutate their immunoglobulin receptor during ontogeny, prior to their differentiation into T-independent antigen-responsive cells. It is therefore proposed that these IgM(+)IgD(+)CD27(+) B cells provide the splenic marginal zone with a diversified and protective preimmune repertoire in charge of the responses against encapsulated bacteria.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                16 March 2009
                : 206
                : 3
                : 561-576
                Affiliations
                [1 ]Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
                [2 ]Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
                [3 ]National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
                [4 ]Department of Immunology and [5 ]Department of Renal Medicine, The Canberra Hospital, Canberra, ACT 2605, Australia
                [6 ]Australian National University Medical School, Canberra, ACT 2605, Australia
                Author notes
                CORRESPONDENCE Carola G Vinuesa: carola.vinuesa@ 123456anu.edu.au
                Article
                20081886
                10.1084/jem.20081886
                2699132
                19221396
                a3798151-bac5-4e28-bd89-3efd37a68d0f
                © 2009 Linterman et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jem.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 21 August 2008
                : 22 January 2009
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content538

                Cited by191

                Most referenced authors2,041