76
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lipid regulation of BK channel function

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This mini-review focuses on lipid modulation of BK (MaxiK, BK Ca) current by a direct interaction between lipid and the BK subunits and/or their immediate lipid environment. Direct lipid-BK protein interactions have been proposed for fatty and epoxyeicosatrienoic acids, phosphoinositides and cholesterol, evidence for such action being less clear for other lipids. BK α (slo1) subunits are sufficient to support current perturbation by fatty and epoxyeicosatrienoic acids, glycerophospholipids and cholesterol, while distinct BK β subunits seem necessary for current modulation by most steroids. Subunit domains or amino acids that participate in lipid action have been identified in a few cases: hslo1 Y318, cerebral artery smooth muscle (cbv1) R334,K335,K336, cbv1 seven cytosolic CRAC domains, slo1 STREX and β1 T169,L172,L173 for docosahexaenoic acid, PIP 2, cholesterol, sulfatides, and cholane steroids, respectively. Whether these protein motifs directly bind lipids or rather transmit the energy of lipid binding to other areas and trigger protein conformation change remains unresolved. The impact of direct lipid-BK interaction on physiology is briefly discussed.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Omega-3 fatty acids lower blood pressure by directly activating large-conductance Ca²⁺-dependent K⁺ channels.

          Long-chain polyunsaturated omega-3 fatty acids such as docosahexaenoic acid (DHA), found abundantly in oily fish, may have diverse health-promoting effects, potentially protecting the immune, nervous, and cardiovascular systems. However, the mechanisms underlying the purported health-promoting effects of DHA remain largely unclear, in part because molecular signaling pathways and effectors of DHA are only beginning to be revealed. In vascular smooth muscle cells, large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels provide a critical vasodilatory influence. We report here that DHA with an EC50 of ∼500 nM rapidly and reversibly activates BK channels composed of the pore-forming Slo1 subunit and the auxiliary subunit β1, increasing currents by up to ∼20-fold. The DHA action is observed in cell-free patches and does not require voltage-sensor activation or Ca(2+) binding but involves destabilization of the closed conformation of the ion conduction gate. DHA lowers blood pressure in anesthetized wild-type but not in Slo1 knockout mice. DHA ethyl ester, contained in dietary supplements, fails to activate BK channels and antagonizes the stimulatory effect of DHA. Slo1 BK channels are thus receptors for long-chain omega-3 fatty acids, and these fatty acids--unlike their ethyl ester derivatives--activate the channels and lower blood pressure. This finding has practical implications for the use of omega-3 fatty acids as nutraceuticals for the general public and also for the critically ill receiving omega-3-enriched formulas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega-3 fatty acid DHA.

            Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels are well known for their functional versatility, which is bestowed in part by their rich modulatory repertoire. We recently showed that long-chain omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) found in oily fish lower blood pressure by activating vascular BK channels made of Slo1+β1 subunits. Here we examined the action of DHA on BK channels with different auxiliary subunit compositions. Neuronal Slo1+β4 channels were just as well activated by DHA as vascular Slo1+β1 channels. In contrast, the stimulatory effect of DHA was much smaller in Slo1+β2, Slo1+LRRC26 (γ1), and Slo1 channels without auxiliary subunits. Mutagenesis of β1, β2, and β4 showed that the large effect of DHA in Slo1+β1 and Slo1+β4 is conferred by the presence of two residues, one in the N terminus and the other in the first transmembrane segment of the β1 and β4 subunits. Transfer of this amino acid pair from β1 or β4 to β2 introduces a large response to DHA in Slo1+β2. The presence of a pair of oppositely charged residues at the aforementioned positions in β subunits is associated with a large response to DHA. The Slo1 auxiliary subunits are expressed in a highly tissue-dependent fashion. Thus, the subunit composition-dependent stimulation by DHA demonstrates that BK channels are effectors of omega-3 fatty acids with marked tissue specificity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Non-covalent binding of membrane lipids to membrane proteins.

              Polar lipids and membrane proteins are major components of biological membranes, both cell membranes and membranes of enveloped viruses. How these two classes of membrane components interact with each other to influence the function of biological membranes is a fundamental question that has attracted intense interest since the origins of the field of membrane studies. One of the most powerful ideas that driven the field is the likelihood that lipids bind to membrane proteins at specific sites, modulating protein structure and function. However only relatively recently has high resolution structure determination of membrane proteins progressed to the point of providing atomic level structure of lipid binding sites on membrane proteins. Analysis of X-ray diffraction, electron crystallography and NMR data over 100 specific lipid binding sites on membrane proteins. These data demonstrate tight lipid binding of both phospholipids and cholesterol to membrane proteins. Membrane lipids bind to membrane proteins by their headgroups, or by their acyl chains, or binding is mediated by the entire lipid molecule. When headgroups bind, binding is stabilized by polar interactions between lipid headgroups and the protein. When acyl chains bind, van der Waals effects dominate as the acyl chains adopt conformations that complement particular sites on the rough protein surface. No generally applicable motifs for binding have yet emerged. Previously published biochemical and biophysical data link this binding with function. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2013 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                22 August 2014
                2014
                : 5
                : 312
                Affiliations
                Department of Pharmacology, The University of Tennessee Health Science Center Memphis, TN, USA
                Author notes

                Edited by: Thomas M. Weiger, University of Salzburg, Austria

                Reviewed by: Irena Levitan, University of Illinois at Chicago, USA; Rebecca Lam, Max Planck Institute of Biophysics, Germany

                *Correspondence: Alex M. Dopico, Department of Pharmacology, The University of Tennessee Health Science Center, 874 Union Ave., #115, Memphis, TN 38163, USA e-mail: adopico@ 123456uthsc.edu

                This article was submitted to Membrane Physiology and Membrane Biophysics, a section of the journal Frontiers in Physiology.

                Article
                10.3389/fphys.2014.00312
                4141547
                25202277
                9826c1a0-e448-462e-83a5-44c9ae3f7a7c
                Copyright © 2014 Dopico and Bukiya.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 May 2014
                : 31 July 2014
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 72, Pages: 7, Words: 6134
                Categories
                Physiology
                Mini Review Article

                Anatomy & Physiology
                maxik channel,protein receptor site,protein-lipid interaction,lipids,electrophysiology

                Comments

                Comment on this article