Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice.

      The Journal of clinical investigation
      Adiposity, genetics, Animals, Energy Metabolism, physiology, Hypothalamus, enzymology, Insulin, metabolism, Mice, Mice, Knockout, Neurons, Pro-Opiomelanocortin, Protein Tyrosine Phosphatase, Non-Receptor Type 1, Protein Tyrosine Phosphatase, Non-Receptor Type 11, RNA, Messenger, Weight Gain

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein tyrosine phosphatase 1B (PTP1B) and SH2 domain-containing protein tyrosine phosphatase-2 (SHP2) have been shown in mice to regulate metabolism via the central nervous system, but the specific neurons mediating these effects are unknown. Here, we have shown that proopiomelanocortin (POMC) neuron-specific deficiency in PTP1B or SHP2 in mice results in reciprocal effects on weight gain, adiposity, and energy balance induced by high-fat diet. Mice with POMC neuron-specific deletion of the gene encoding PTP1B (referred to herein as POMC-Ptp1b-/- mice) had reduced adiposity, improved leptin sensitivity, and increased energy expenditure compared with wild-type mice, whereas mice with POMC neuron-specific deletion of the gene encoding SHP2 (referred to herein as POMC-Shp2-/- mice) had elevated adiposity, decreased leptin sensitivity, and reduced energy expenditure. POMC-Ptp1b-/- mice showed substantially improved glucose homeostasis on a high-fat diet, and hyperinsulinemic-euglycemic clamp studies revealed that insulin sensitivity in these mice was improved on a standard chow diet in the absence of any weight difference. In contrast, POMC-Shp2-/- mice displayed impaired glucose tolerance only secondary to their increased weight gain. Interestingly, hypothalamic Pomc mRNA and alpha-melanocyte-stimulating hormone (alphaMSH) peptide levels were markedly reduced in POMC-Shp2-/- mice. These studies implicate PTP1B and SHP2 as important components of POMC neuron regulation of energy balance and point to what we believe to be a novel role for SHP2 in the normal function of the melanocortin system.

          Related collections

          Author and article information

          Comments

          Comment on this article