42
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aplicações sintéticas de lipases imobilizadas em polímeros Translated title: Synthetic applications of immobilized lipases in polymers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Translated abstract

          The application of biocatalysis is a promising field related to new technologies for organic synthesis. The development of immobilization techniques is very important due to the multiple or repetitive use of a single batch of enzymes and the ability to stop the reaction rapidly, at any stage, by removing the enzymes. In most cases, after immobilization, enzymes and microorganisms maintain or even increase their activity and stability. This work presents an overview of the common methods for lipase immobilization in polymers and applications of these systems to obtain compounds of synthetic interest.

          Related collections

          Most cited references140

          • Record: found
          • Abstract: found
          • Article: not found

          Predicting absolute ligand binding free energies to a simple model site.

          A central challenge in structure-based ligand design is the accurate prediction of binding free energies. Here we apply alchemical free energy calculations in explicit solvent to predict ligand binding in a model cavity in T4 lysozyme. Even in this simple site, there are challenges. We made systematic improvements, beginning with single poses from docking, then including multiple poses, additional protein conformational changes, and using an improved charge model. Computed absolute binding free energies had an RMS error of 1.9 kcal/mol relative to previously determined experimental values. In blind prospective tests, the methods correctly discriminated between several true ligands and decoys in a set of putative binders identified by docking. In these prospective tests, the RMS error in predicted binding free energies relative to those subsequently determined experimentally was only 0.6 kcal/mol. X-ray crystal structures of the new ligands bound in the cavity corresponded closely to predictions from the free energy calculations, but sometimes differed from those predicted by docking. Finally, we examined the impact of holding the protein rigid, as in docking, with a view to learning how approximations made in docking affect accuracy and how they may be improved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Directed aggregation and fusion of lipid vesicles induced by DNA-surfactants

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site.

              We present a combined experimental and modeling study of organic ligand molecules binding to a slightly polar engineered cavity site in T4 lysozyme (L99A/M102Q). For modeling, we computed alchemical absolute binding free energies. These were blind tests performed prospectively on 13 diverse, previously untested candidate ligand molecules. We predicted that eight compounds would bind to the cavity and five would not; 11 of 13 predictions were correct at this level. The RMS error to the measurable absolute binding energies was 1.8 kcal/mol. In addition, we computed "relative" binding free energies for six phenol derivatives starting from two known ligands: phenol and catechol. The average RMS error in the relative free energy prediction was 2.5 kcal/mol (phenol) and 1.1 kcal/mol (catechol). To understand these results at atomic resolution, we obtained x-ray co-complex structures for nine of the diverse ligands and for all six phenol analogs. The average RMSD of the predicted pose to the experiment was 2.0 A (diverse set), 1.8 A (phenol-derived predictions), and 1.2 A (catechol-derived predictions). We found that predicting accurate affinities and rank-orderings required near-native starting orientations of the ligand in the binding site. Unanticipated binding modes, multiple ligand binding, and protein conformational change all proved challenging for the free energy methods. We believe that these results can help guide future improvements in physics-based absolute binding free energy methods.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Journal
                qn
                Química Nova
                Quím. Nova
                Sociedade Brasileira de Química (São Paulo )
                1678-7064
                August 2004
                : 27
                : 4
                : 623-630
                Affiliations
                [1 ] Universidade do Vale do Itajaí
                [2 ] Universidade Federal de Santa Catarina Brazil
                Article
                S0100-40422004000400017
                10.1590/S0100-40422004000400017
                785669f4-4910-40d7-ba1f-6d34a2f55ae7

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO Brazil

                Self URI (journal page): http://www.scielo.br/scielo.php?script=sci_serial&pid=0100-4042&lng=en
                Categories
                CHEMISTRY, MULTIDISCIPLINARY

                General chemistry
                lipases,immobilization,polymers
                General chemistry
                lipases, immobilization, polymers

                Comments

                Comment on this article