Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Targeting a Cryptic Allosteric Site for Selective Inhibition of the Oncogenic Protein Tyrosine Phosphatase Shp2

      research-article
      , ,
      Biochemistry
      American Chemical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein tyrosine phosphatases (PTPs) have been the subject of considerable pharmaceutical-design efforts because of the ubiquitous connections between misregulation of PTP activity and human disease. PTP-inhibitor discovery has been hampered, however, by the difficulty in identifying cell-permeable compounds that can selectively target PTP active sites, and no PTP inhibitors have progressed to the clinic. The identification of allosteric sites on target PTPs therefore represents a potentially attractive solution to the druggability problem of PTPs. Here we report that the oncogenic PTP Shp2 contains an allosteric-inhibition site that renders the enzyme sensitive to potent and selective inhibition by cell-permeable biarsenical compounds. Because Shp2 contains no canonical tetracysteine biarsenical-binding motif, the enzyme’s inhibitor-binding site is not readily predictable from its primary or three-dimensional structure. Intriguingly, however, Shp2’s PTP domain does contain a cysteine residue (C333) at a position that is removed from the active site and is occupied by proline in other classical PTPs. We show that Shp2’s unusual cysteine residue constitutes part of a Shp2-specific allosteric-inhibition site, and that Shp2’s sensitivity to biarsenicals is dependent on the presence of the naturally occurring C333. The determinative role of this residue in conferring inhibitor sensitivity is surprising because C333’s side chain is inaccessible to solvent in Shp2 crystal structures. The discovery of this cryptic Shp2 allosteric site may provide a means for targeting Shp2 activity with high specificity and suggests that buried-yet-targetable allosteric sites could be similarly uncovered in other protein families.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling.

          Src homology-2 (SH2) domain-containing phosphatases (Shps) are a small, highly conserved subfamily of protein-tyrosine phosphatases, members of which are present in both vertebrates and invertebrates. The mechanism of regulation of Shps by ligand binding is now well understood. Much is also known about the normal signaling pathways regulated by each Shp and the consequences of Shp deficiency. Recent studies have identified mutations in human Shp2 as the cause of the inherited disorder Noonan syndrome. Shp2 mutations might also contribute to the pathogenesis of some leukemias. In addition, Shp2 might be a key virulence determinant for the important human pathogen Helicobacter pylori. Despite these efforts, however, the key targets of each Shp have remained elusive. Identifying these substrates remains a major challenge for future research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia.

            We report here that individuals with Noonan syndrome and juvenile myelomonocytic leukemia (JMML) have germline mutations in PTPN11 and that somatic mutations in PTPN11 account for 34% of non-syndromic JMML. Furthermore, we found mutations in PTPN11 in a small percentage of individuals with myelodysplastic syndrome (MDS) and de novo acute myeloid leukemia (AML). Functional analyses documented that the two most common mutations in PTPN11 associated with JMML caused a gain of function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Specific covalent labeling of recombinant protein molecules inside live cells.

              Recombinant proteins containing four cysteines at the i, i + 1, i + 4, and i + 5 positions of an alpha helix were fluorescently labeled in living cells by extracellular administration of 4',5'-bis(1,3, 2-dithioarsolan-2-yl)fluorescein. This designed small ligand is membrane-permeant and nonfluorescent until it binds with high affinity and specificity to the tetracysteine domain. Such in situ labeling adds much less mass than does green fluorescent protein and offers greater versatility in attachment sites as well as potential spectroscopic and chemical properties. This system provides a recipe for slightly modifying a target protein so that it can be singled out from the many other proteins inside live cells and fluorescently stained by small nonfluorescent dye molecules added from outside the cells.
                Bookmark

                Author and article information

                Journal
                Biochemistry
                Biochemistry
                bi
                bichaw
                Biochemistry
                American Chemical Society
                0006-2960
                1520-4995
                17 December 2015
                17 December 2014
                20 January 2015
                : 54
                : 2
                : 497-504
                Affiliations
                [1]Department of Chemistry, Amherst College , Amherst, Massachusetts 01002, United States
                Author notes
                [* ]E-mail: acbishop@ 123456amherst.edu . Phone: (413) 542-8316.
                Article
                10.1021/bi5013595
                4303306
                25519989
                759e0fb2-a579-41f0-938e-5dadec75a238
                Copyright © 2014 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 01 November 2014
                : 09 December 2014
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                bi5013595
                bi-2014-013595

                Biochemistry
                Biochemistry

                Comments

                Comment on this article