Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of “semiochemicals”, which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.

          Related collections

          Most cited references267

          • Record: found
          • Abstract: found
          • Article: not found

          Insect olfactory receptors are heteromeric ligand-gated ion channels.

          In insects, each olfactory sensory neuron expresses between one and three ligand-binding members of the olfactory receptor (OR) gene family, along with the highly conserved and broadly expressed Or83b co-receptor. The functional insect OR consists of a heteromeric complex of unknown stoichiometry but comprising at least one variable odorant-binding subunit and one constant Or83b family subunit. Insect ORs lack homology to G-protein-coupled chemosensory receptors in vertebrates and possess a distinct seven-transmembrane topology with the amino terminus located intracellularly. Here we provide evidence that heteromeric insect ORs comprise a new class of ligand-activated non-selective cation channels. Heterologous cells expressing silkmoth, fruitfly or mosquito heteromeric OR complexes showed extracellular Ca2+ influx and cation-non-selective ion conductance on stimulation with odorant. Odour-evoked OR currents are independent of known G-protein-coupled second messenger pathways. The fast response kinetics and OR-subunit-dependent K+ ion selectivity of the insect OR complex support the hypothesis that the complex between OR and Or83b itself confers channel activity. Direct evidence for odorant-gated channels was obtained by outside-out patch-clamp recording of Xenopus oocyte and HEK293T cell membranes expressing insect OR complexes. The ligand-gated ion channel formed by an insect OR complex seems to be the basis for a unique strategy that insects have acquired to respond to the olfactory environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The use of push-pull strategies in integrated pest management.

            Push-pull strategies involve the behavioral manipulation of insect pests and their natural enemies via the integration of stimuli that act to make the protected resource unattractive or unsuitable to the pests (push) while luring them toward an attractive source (pull) from where the pests are subsequently removed. The push and pull components are generally nontoxic. Therefore, the strategies are usually integrated with methods for population reduction, preferably biological control. Push-pull strategies maximize efficacy of behavior-manipulating stimuli through the additive and synergistic effects of integrating their use. By orchestrating a predictable distribution of pests, efficiency of population-reducing components can also be increased. The strategy is a useful tool for integrated pest management programs reducing pesticide input. We describe the principles of the strategy, list the potential components, and present case studies reviewing work on the development and use of push-pull strategies in each of the major areas of pest control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels.

              From worm to man, many odorant signals are perceived by the binding of volatile ligands to odorant receptors that belong to the G-protein-coupled receptor (GPCR) family. They couple to heterotrimeric G-proteins, most of which induce cAMP production. This second messenger then activates cyclic-nucleotide-gated ion channels to depolarize the olfactory receptor neuron, thus providing a signal for further neuronal processing. Recent findings, however, have challenged this concept of odorant signal transduction in insects, because their odorant receptors, which lack any sequence similarity to other GPCRs, are composed of conventional odorant receptors (for example, Or22a), dimerized with a ubiquitously expressed chaperone protein, such as Or83b in Drosophila. Or83b has a structure akin to GPCRs, but has an inverted orientation in the plasma membrane. However, G proteins are expressed in insect olfactory receptor neurons, and olfactory perception is modified by mutations affecting the cAMP transduction pathway. Here we show that application of odorants to mammalian cells co-expressing Or22a and Or83b results in non-selective cation currents activated by means of an ionotropic and a metabotropic pathway, and a subsequent increase in the intracellular Ca(2+) concentration. Expression of Or83b alone leads to functional ion channels not directly responding to odorants, but being directly activated by intracellular cAMP or cGMP. Insect odorant receptors thus form ligand-gated channels as well as complexes of odorant-sensing units and cyclic-nucleotide-activated non-selective cation channels. Thereby, they provide rapid and transient as well as sensitive and prolonged odorant signalling.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                30 June 2016
                2016
                : 7
                : 271
                Affiliations
                [1] 1Department of Molecular and Cell Biology and Essig Museum of Entomology, University of California, Berkeley Berkeley, CA, USA
                [2] 2Department of Neuroscience, University of Arizona Tucson, AZ, USA
                [3] 3Lab. de Estudio de la Biología de Insectos, CICyTTP-CONICET Diamante, Argentina
                [4] 4Facultad de Ingeniería, Universidad Nacional de Entre Ríos Oro Verde, Argentina
                Author notes

                Edited by: Sylvia Anton, Institut National de la Recherche Agronomique, France

                Reviewed by: Rickard Ignell, Swedish University of Agricultural Sciences, Sweden; Andrey Nikolaevich Frolov, All-Russian Research Institute of Plant Protection, Russia

                *Correspondence: Pablo G. Guerenstein pguerenstein@ 123456bioingenieria.edu.ar

                This article was submitted to Invertebrate Physiology, a section of the journal Frontiers in Physiology

                †Present Address: Hong Lei, School of Life Sciences, Arizona State University, Tempe, AZ, USA

                Article
                10.3389/fphys.2016.00271
                4928593
                27445858
                732ec25d-48e8-4e33-9c9c-de160390230a
                Copyright © 2016 Reisenman, Lei and Guerenstein.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 February 2016
                : 16 June 2016
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 319, Pages: 21, Words: 21667
                Funding
                Funded by: National Science Foundation 10.13039/100000001
                Award ID: DMS 2100004
                Funded by: Agencia Nacional de Promoción Científica y Tecnológica 10.13039/501100003074
                Award ID: PICT-PRH-2009-43
                Categories
                Physiology
                Review

                Anatomy & Physiology
                crop pest,disease vector,integrated pest management,odor attractant,disruption of behavior,odor repelllent,insect neuroethology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content142

                Cited by14

                Most referenced authors2,073