Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
193
views
0
recommends
+1 Recommend
1 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Toward a Comprehensive Map of the Effectors of Rab GTPases

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          The Rab GTPases recruit peripheral membrane proteins to intracellular organelles. These Rab effectors typically mediate the motility of organelles and vesicles and contribute to the specificity of membrane traffic. However, for many Rabs, few, if any, effectors have been identified; hence, their role remains unclear. To identify Rab effectors, we used a comprehensive set of Drosophila Rabs for affinity chromatography followed by mass spectrometry to identify the proteins bound to each Rab. For many Rabs, this revealed specific interactions with Drosophila orthologs of known effectors. In addition, we found numerous Rab-specific interactions with known components of membrane traffic as well as with diverse proteins not previously linked to organelles or having no known function. We confirm over 25 interactions for Rab2, Rab4, Rab5, Rab6, Rab7, Rab9, Rab18, Rab19, Rab30, and Rab39. These include tethering complexes, coiled-coiled proteins, motor linkers, Rab regulators, and several proteins linked to human disease.

          Graphical Abstract

          Highlights

          • Proteomic screen identifies effectors of Drosophila Rabs with a human ortholog

          • Specific hits include orthologs of numerous known effectors of mammalian Rabs

          • Validated effectors include traffic proteins and those of unknown function

          • Orthologs of disease genes CLEC16A, LRRK2, and SPG20 are validated as effectors

          Abstract

          Rab GTPases organize cellular compartments by recruiting specific effectors to organelle membranes. This paper describes affinity chromatography using all Drosophila Rabs with a mammalian ortholog. The Rab interactors found include known effectors, tethering complexes, coiled-coil proteins, motor proteins, proteins of unknown function, and several proteins linked to human disease.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Defining the human deubiquitinating enzyme interaction landscape.

          Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rabs and their effectors: achieving specificity in membrane traffic.

            Rab proteins constitute the largest branch of the Ras GTPase superfamily. Rabs use the guanine nucleotide-dependent switch mechanism common to the superfamily to regulate each of the four major steps in membrane traffic: vesicle budding, vesicle delivery, vesicle tethering, and fusion of the vesicle membrane with that of the target compartment. These different tasks are carried out by a diverse collection of effector molecules that bind to specific Rabs in their GTP-bound state. Recent advances have not only greatly extended the number of known Rab effectors, but have also begun to define the mechanisms underlying their distinct functions. By binding to the guanine nucleotide exchange proteins that activate the Rabs certain effectors act to establish positive feedback loops that help to define and maintain tightly localized domains of activated Rab proteins, which then serve to recruit other effector molecules. Additionally, Rab cascades and Rab conversions appear to confer directionality to membrane traffic and couple each stage of traffic with the next along the pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Rab5 effector EEA1 is a core component of endosome docking.

              Intracellular membrane docking and fusion requires the interplay between soluble factors and SNAREs. The SNARE hypothesis postulates that pairing between a vesicular v-SNARE and a target membrane z-SNARE is the primary molecular interaction underlying the specificity of vesicle targeting as well as lipid bilayer fusion. This proposal is supported by recent studies using a minimal artificial system. However, several observations demonstrate that SNAREs function at multiple transport steps and can pair promiscuously, questioning the role of SNAREs in conveying vesicle targeting. Moreover, other proteins have been shown to be important in membrane docking or tethering. Therefore, if the minimal machinery is defined as the set of proteins sufficient to reproduce in vitro the fidelity of vesicle targeting, docking and fusion as in vivo, then SNAREs are not sufficient to specify vesicle targeting. Endosome fusion also requires cytosolic factors and is regulated by the small GTPase Rab5. Here we show that Rab5-interacting soluble proteins can completely substitute for cytosol in an in vivo endosome-fusion assay, and that the Rab5 effector EEA1 is the only factor necessary to confer minimal fusion activity. Rab5 and other associated proteins seem to act upstream of EEA1, implying that Rab5 effectors comprise both regulatory molecules and mechanical components of the membrane transport machinery. We further show that EEA1 mediates endosome docking and, together with SNAREs, leads to membrane fusion.
                Bookmark

                Author and article information

                Contributors
                Journal
                Dev Cell
                Dev. Cell
                Developmental Cell
                Cell Press
                1534-5807
                1878-1551
                10 November 2014
                10 November 2014
                : 31
                : 3
                : 358-373
                Affiliations
                [1 ]MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
                [2 ]Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, UK
                Author notes
                []Corresponding author sean@ 123456mrc-lmb.cam.ac.uk
                Article
                S1534-5807(14)00653-4
                10.1016/j.devcel.2014.10.007
                4232348
                25453831
                66e5e46d-d539-4dc1-9fd3-f96342daeaca
                © 2014 The Authors
                History
                : 7 March 2014
                : 25 July 2014
                : 25 September 2014
                Categories
                Resource

                Developmental biology
                Developmental biology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content8

                Cited by119

                Most referenced authors1,063