22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phage-Derived Fully Human Monoclonal Antibody Fragments to Human Vascular Endothelial Growth Factor-C Block Its Interaction with VEGF Receptor-2 and 3

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vascular endothelial growth factor C (VEGF-C) is a key mediator of lymphangiogenesis, acting via its receptors VEGF-R2 and VEGF-R3. High expression of VEGF-C in tumors correlates with increased lymphatic vessel density, lymphatic vessel invasion, sentinel lymph node metastasis and poor prognosis. Recently, we found that in a chemically induced skin carcinoma model, increased VEGF-C drainage from the tumor enhanced lymphangiogenesis in the sentinel lymph node and facilitated metastatic spread of cancer cells via the lymphatics. Hence, interference with the VEGF-C/VEGF-R3 axis holds promise to block metastatic spread, as recently shown by use of a neutralizing anti-VEGF-R3 antibody and a soluble VEGF-R3 (VEGF-C/D trap). By antibody phage-display, we have developed a human monoclonal antibody fragment (single-chain Fragment variable, scFv) that binds with high specificity and affinity to the fully processed mature form of human VEGF-C. The scFv binds to an epitope on VEGF-C that is important for receptor binding, since binding of the scFv to VEGF-C dose-dependently inhibits the binding of VEGF-C to VEGF-R2 and VEGF-R3 as shown by BIAcore and ELISA analyses. Interestingly, the variable heavy domain (V H) of the anti-VEGF-C scFv, which contains a mutation typical for camelid heavy chain-only antibodies, is sufficient for binding VEGF-C. This reduced the size of the potentially VEGF-C-blocking antibody fragment to only 14.6 kDa. Anti-VEGF-C V H-based immunoproteins hold promise to block the lymphangiogenic activity of VEGF-C, which would present a significant advance in inhibiting lymphatic-based metastatic spread of certain cancer types.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Conformations of immunoglobulin hypervariable regions.

          On the basis of comparative studies of known antibody structures and sequences it has been argued that there is a small repertoire of main-chain conformations for at least five of the six hypervariable regions of antibodies, and that the particular conformation adopted is determined by a few key conserved residues. These hypotheses are now supported by reasonably successful predictions of the structures of most hypervariable regions of various antibodies, as revealed by comparison with their subsequently determined structures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains.

            The antigen-binding site of antibodies from vertebrates is formed by combining the variable domains of a heavy chain (VH) and a light chain (VL). However, antibodies from camels and llamas are an important exception to this in that their sera contain, in addition, a unique kind of antibody that is formed by heavy chains only. The antigen-binding site of these antibodies consists of one single domain, referred to as VHH. This article reviews the mutations and structural adaptations that have taken place to reshape a VH of a VH-VL pair into a single-domain VHH with retention of a sufficient variability. The VHH has a potent antigen-binding capacity and provides the advantage of interacting with novel epitopes that are inaccessible to conventional VH-VL pairs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of tumor lymphangiogenesis in metastatic spread.

              The high mortality rates associated with cancer can be attributed to the metastatic spread of tumor cells from the site of their origin. Tumor cells invade either the blood or lymphatic vessels to access the general circulation and then establish themselves in other tissues. Clinicopathological data suggest that the lymphatics are an initial route for the spread of solid tumors. Detection of sentinel lymph nodes by biopsy provides significant information for staging and designing therapeutic regimens. The role of angiogenesis in facilitating the growth of solid tumors has been well established, but the presence of lymphatic vessels and the relevance of lymphangiogenesis to tumor spread are less clear. Recently, the molecular pathway that signals for lymphangiogenesis and relatively specific markers for lymphatic endothelium have been described allowing analyses of tumor lymphangiogenesis to be performed in animal models. These studies demonstrate that tumor lymphangiogenesis is a major component of the metastatic process and implicate members of the VEGF family of growth factors as key mediators of lymphangiogenesis in both normal biology and tumors.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                2 August 2010
                : 5
                : 8
                : e11941
                Affiliations
                [1 ]Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
                [2 ]Philochem AG, ETH Zurich, Zurich, Switzerland
                [3 ]Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
                University of Southampton, United Kingdom
                Author notes

                Conceived and designed the experiments: MR AV KBH DN MD. Performed the experiments: MR AV. Analyzed the data: MR AV KBH DN MD. Contributed reagents/materials/analysis tools: KBH DN MD. Wrote the paper: MR MD.

                Article
                10-PONE-RA-18454R1
                10.1371/journal.pone.0011941
                2914788
                20689828
                4f595dee-54ca-4bcf-83c7-0f8ed2ee709f
                Rinderknecht et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 30 April 2010
                : 6 July 2010
                Page count
                Pages: 16
                Categories
                Research Article
                Biochemistry/Biomacromolecule-Ligand Interactions
                Chemical Biology/Directed Molecular Evolution
                Cardiovascular Disorders/Vascular Biology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article