Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET)

      , , , ,
      European Neuropsychopharmacology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Until recently, racemic ketamine (S-ketamine/R-ketamine = 50:50) has been used to study NMDA receptor hypofunction in relation to pathophysiological models of schizophrenia. Ketamine given to normal humans in subanesthetic doses produces a model psychosis including both positive and negative symptoms of schizophrenia. More recently it has been shown that at subanesthetic doses the pure (S)- and (R)-ketamine enantiomeres interact differently with the NMDA and sigma receptor sites in human brain. It was found that (S)-ketamine binds with a 3-4 time higher affinity to the PCP binding site of the NMDA receptor than (R)-ketamine, and that at these concentrations (R)-ketamine interacts also weakly with the sigma receptor sites, where (S)-ketamine binds only negligibly. To further investigate the role of NMDA-receptor mediated neurotransmission in schizophrenic psychosis, the effects of pure (S)- and (R)-ketamine enantiomeres on brain energy metabolism in normal humans using positron emission tomography and [18F]fluorodeoxyglucose (FDG) are reported here. Psychotomimetic doses of (S)-ketamine increased cerebral metabolic rates of glucose (CMRglu) markedly in the frontal cortex including the anterior cingulate, parietal and left sensorimotor cortex, and in the thalamus. The metabolic changes in the frontal and left temporal cortex correlated with ego-disintegration and hallucinatory phenomena. Equimolar doses of (R)-ketamine tended to decrease CMRglu across brain regions and significantly suppressed CMRglu in the temporomedial cortex and left insula. (R)-ketamine did not produce psychotic symptoms, but a state of relaxation. The (S)-ketamine-induced metabolic hyperfrontality appears to parallel similar metabolic findings in acute psychotic schizophrenic patients and encourages further investigations of glutamatergic disturbances in schizophrenia.

          Related collections

          Author and article information

          Journal
          European Neuropsychopharmacology
          European Neuropsychopharmacology
          Elsevier BV
          0924977X
          February 1997
          February 1997
          : 7
          : 1
          : 25-38
          Article
          10.1016/S0924-977X(96)00042-9
          9088882
          3d3b86f5-2f59-4699-ba3d-ebdf0b8b4961
          © 1997

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content824

          Cited by90