Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Antibiotics and prevention of microbial colonization of catheters.

      Antimicrobial Agents and Chemotherapy
      Anti-Bacterial Agents, pharmacology, Bacteria, drug effects, growth & development, Biofilms, Candida, Catheters, Indwelling, adverse effects, Clindamycin, Drug Synergism, Drug Therapy, Combination, Equipment Contamination, Minocycline, Novobiocin, Rifampin, Staphylococcus, Vancomycin

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Slime-producing staphylococci frequently colonize catheters, and when they are embedded in biofilm, they become resistant to various antibiotics. In the study that is described, the comparative efficacies of vancomycin, clindamycin, novobiocin, and minocycline, alone or in combination with rifampin, were tested in an in vitro model of colonization. The model consisted of the modified Robbins device with antibiotic-impregnated cement filling the lumen of catheter segments. The synergistic combination of minocycline and rifampin was the most efficacious in preventing bacterial colonization of slime-producing strains of Staphylococcus epidermidis and Staphylococcus aureus to catheter surfaces. A similar trend was observed when the inhibitory activities of polyurethane catheters coated with minocycline and rifampin were compared with the inhibitory activities of catheters coated with other antimicrobial agents. The inhibitory activities of catheters coated with minocycline and rifampin against S. epidermidis, S. aureus, and Enterococcus faecalis strains, for example, were significantly better than those of catheters coated with vancomycin (P < 0.05). The inhibitory activities of catheters coated with minocycline and rifampin against gram-negative bacilli and Candida albicans were comparable to those of catheters coated with ceftazidime and amphotericin B, respectively. We found that the combination of minocycline and rifampin is unique and highly effective in preventing the colonization of catheters with slime-producing staphylococci and that it also displays a broad-spectrum inhibitory activity against gram-negative bacteria and yeast cells.

          Related collections

          Author and article information

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content96

          Cited by14