Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent.

      Journal of the American Chemical Society
      Animals, Astrocytes, metabolism, physiology, Biocompatible Materials, administration & dosage, chemistry, CHO Cells, Cricetinae, DNA, Dendrimers, Green Fluorescent Proteins, biosynthesis, genetics, HeLa Cells, Humans, Microscopy, Fluorescence, Models, Molecular, Nanostructures, Plasmids, Polyamines, Rats, Silicon Dioxide, Transfection, methods

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We synthesized a MCM-41-type mesoporous silica nanosphere (MSN)-based gene transfection system, where second generation (G2) polyamidoamines (PAMAMs) were covalently attached to the surface of MSN. The G2-PAMAM-capped MSN material (G2-MSN) was used to complex with a plasmid DNA (pEGFP-C1) that encodes for an enhanced green fluorescence protein. The gene transfection efficacy, uptake mechanism, and biocompatibility of the G2-MSN system with various cell types, such as neural glia (astrocytes), human cervical cancer (HeLa), and Chinese hamster ovarian (CHO) cells, were investigated. The mesoporous structure of the MSN material allows membrane-impermeable molecules, such as pharmaceutical drugs and fluorescent dyes, to be encapsulated inside the MSN channels. The system renders the possibility to serve as a universal transmembrane carrier for intracellular drug delivery and imaging applications.

          Related collections

          Author and article information

          Comments

          Comment on this article