Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
284
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The use of cellular thermal shift assay (CETSA) to study Crizotinib resistance in ALK-expressing human cancers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Various forms of oncogenic ALK proteins have been identified in various types of human cancers. While Crizotinib, an ALK inhibitor, has been found to be therapeutically useful against a subset of ALK + tumours, clinical resistance to this drug has been well recognized and the mechanism of this phenomenon is incompletely understood. Using the cellular thermal shift assay (CETSA), we measured the Crizotinib—ALK binding in a panel of ALK + cell lines, and correlated the findings with the ALK structure and its interactions with specific binding proteins. The Crizotinib IC 50 significantly correlated with Crizotinib—ALK binding. The suboptimal Crizotinib—ALK binding in Crizotinib-resistant cells is not due to the cell-specific environment, since transfection of NPM-ALK into these cells revealed substantial Crizotinib—NPM-ALK binding. Interestingly, we found that the resistant cells expressed higher protein level of β-catenin and siRNA knockdown restored Crizotinib—ALK binding (correlated with a significant lowering of IC 50). Computational analysis of the crystal structures suggests that β-catenin exerts steric hindrance to the Crizotinib—ALK binding. In conclusion, the Crizotinib—ALK binding measurable by CETSA is useful in predicting Crizotinib sensitivity, and Crizotinib—ALK binding is in turn dictated by the structure of ALK and some of its binding partners.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.

          Despite the success of tyrosine kinase-based cancer therapeutics, for most solid tumors the tyrosine kinases that drive disease remain unknown, limiting our ability to identify drug targets and predict response. Here we present the first large-scale survey of tyrosine kinase activity in lung cancer. Using a phosphoproteomic approach, we characterize tyrosine kinase signaling across 41 non-small cell lung cancer (NSCLC) cell lines and over 150 NSCLC tumors. Profiles of phosphotyrosine signaling are generated and analyzed to identify known oncogenic kinases such as EGFR and c-Met as well as novel ALK and ROS fusion proteins. Other activated tyrosine kinases such as PDGFRalpha and DDR1 not previously implicated in the genesis of NSCLC are also identified. By focusing on activated cell circuitry, the approach outlined here provides insight into cancer biology not available at the chromosomal and transcriptional levels and can be applied broadly across all human cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cellular thermal shift assay for evaluating drug target interactions in cells.

            Thermal shift assays are used to study thermal stabilization of proteins upon ligand binding. Such assays have been used extensively on purified proteins in the drug discovery industry and in academia to detect interactions. Recently, we published a proof-of-principle study describing the implementation of thermal shift assays in a cellular format, which we call the cellular thermal shift assay (CETSA). The method allows studies of target engagement of drug candidates in a cellular context, herein exemplified with experimental data on the human kinases p38α and ERK1/2. The assay involves treatment of cells with a compound of interest, heating to denature and precipitate proteins, cell lysis, and the separation of cell debris and aggregates from the soluble protein fraction. Whereas unbound proteins denature and precipitate at elevated temperatures, ligand-bound proteins remain in solution. We describe two procedures for detecting the stabilized protein in the soluble fraction of the samples. One approach involves sample workup and detection using quantitative western blotting, whereas the second is performed directly in solution and relies on the induced proximity of two target-directed antibodies upon binding to soluble protein. The latter protocol has been optimized to allow an increased throughput, as potential applications require large numbers of samples. Both approaches can be completed in a day.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer.

              Patients with anaplastic lymphoma kinase (ALK) gene rearrangements often manifest dramatic responses to crizotinib, a small-molecule ALK inhibitor. Unfortunately, not every patient responds and acquired drug resistance inevitably develops in those who do respond. This study aimed to define molecular mechanisms of resistance to crizotinib in patients with ALK(+) non-small cell lung cancer (NSCLC). We analyzed tissue obtained from 14 patients with ALK(+) NSCLC showing evidence of radiologic progression while on crizotinib to define mechanisms of intrinsic and acquired resistance to crizotinib. Eleven patients had material evaluable for molecular analysis. Four patients (36%) developed secondary mutations in the tyrosine kinase domain of ALK. A novel mutation in the ALK domain, encoding a G1269A amino acid substitution that confers resistance to crizotinib in vitro, was identified in two of these cases. Two patients, one with a resistance mutation, exhibited new onset ALK copy number gain (CNG). One patient showed outgrowth of epidermal growth factor receptor (EGFR) mutant NSCLC without evidence of a persistent ALK gene rearrangement. Two patients exhibited a KRAS mutation, one of which occurred without evidence of a persisting ALK gene rearrangement. One patient showed the emergence of an ALK gene fusion-negative tumor compared with the baseline sample but with no identifiable alternate driver. Two patients retained ALK positivity with no identifiable resistance mechanism. Crizotinib resistance in ALK(+) NSCLC occurs through somatic kinase domain mutations, ALK gene fusion CNG, and emergence of separate oncogenic drivers.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                19 September 2016
                2016
                : 6
                : 33710
                Affiliations
                [1 ]Department of Laboratory Medicine and Pathology, University of Alberta , Edmonton, Alberta, Canada
                [2 ]Department of Applied Medical Sciences, Taibah University , Almedinah, P.O. Box 41477, Saudi Arabia
                [3 ]Department of Pathology and Laboratory Medicine, University of British Columbia , Vancouver, BC V5Z 1L3, Canada
                [4 ]Department of Medical Oncology, The First hospital of China Medical University , Shen Yang 110001, P. R. China
                [5 ]Department of Internal Medicine, University of Alberta , Edmonton, Alberta, Canada
                [6 ]Department of Laboratory Medicine and Pathobiology, University of Toronto , Toronto, Canada
                [7 ]National Research Center , Cairo, Egypt
                [8 ]Department of Oncology, University of Alberta , Edmonton, Alberta, Canada
                [9 ]DynaLIFEDx Medical Laboratories , Edmonton, Canada
                Author notes
                Article
                srep33710
                10.1038/srep33710
                5027386
                27641368
                0e43f3ee-c101-4d96-8b48-939825d73ca2
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 11 April 2016
                : 01 September 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content911

                Cited by15

                Most referenced authors1,779