Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro

      research-article
      The Journal of Cell Biology
      The Rockefeller University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have investigated two aspects of membrane traffic at early stages of endocytosis: membrane fusion and microtubule-dependent transport. As a marker, we have used the trans-membrane glycoprotein G of vesicular stomatitis virus implanted into the plasma membrane and then internalized for different times at 37 degrees C. The corresponding endosomal fractions were immunoisolated using the cytoplasmic domain of the G protein as antigen. These fractions were then used in an in vitro assay to quantify the efficiency of fusion between endosomal vesicles. To identify the vesicular partners of the fusion, these in vitro studies were combined with in vivo biochemical and morphological experiments. Internalized molecules were delivered to early endosomal elements, which corresponded to a network of tubular and tubulovesicular structures. Rapid recycling back to the plasma membrane and routing to late stages of the pathway occurred from these early endosomal elements. These elements exhibited a high and specific fusion activity with each other in vitro, suggesting that individual elements of the early endosomal compartment interact with each other in vivo. After their appearance in the early endosome, the molecules destined to be degraded were observed at the next stage of the pathway in distinct spherical vesicles (0.5 micron diam) and then in late endosomes and lysosomes. When the microtubules were depolymerized with nocodazole, endocytosis proceeded as in control cells. However, internalized molecules remained in the spherical vesicles and did not appear in late endosomes or lysosomes. These spherical vesicles had relatively little fusion activity with each other or with early endosomal elements in vitro. Our observations suggest that the spherical vesicles mediate transport between the early endosome and late endosomes and that this process requires intact microtubules.

          Related collections

          Author and article information

          Journal
          J Cell Biol
          The Journal of Cell Biology
          The Rockefeller University Press
          0021-9525
          1540-8140
          1 April 1989
          : 108
          : 4
          : 1301-1316
          Article
          89174966
          10.1083/jcb.108.4.1301
          2115527
          2538480
          0e1744dd-6f6f-4ee6-bd76-6545e0da4528
          History
          Categories
          Articles

          Cell biology
          Cell biology

          Comments

          Comment on this article