Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Development of Murine Plasmacytoid Dendritic Cell Precursors Is Differentially Regulated by FLT3-ligand and Granulocyte/Macrophage Colony-Stimulating Factor

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plasmacytoid predendritic cells or type 1 interferon (IFN)-producing cells (IPCs) have recently been identified in mice. Although culture systems giving rise to different murine dendritic cell subsets have been established, the developmental regulation of murine plasmacytoid IPCs and the culture conditions leading to their generation remain unknown. Here we show that large numbers of over 40% pure CD11c +CD11b B220 +Gr-1 + IPCs can be generated from mouse bone marrow cultures with FLT3-ligand. By contrast GM-CSF or TNF-α, which promote the generation of CD11c +CD11b +B220 myeloid DCs, block completely the development of IPCs. IPCs generated display similar features to human IPCs, such as the plasmacytoid morphology, the ability to produce large amounts of IFN-α in responses to herpes simplex virus, and the capacity to respond to ligands for Toll-like receptor 9 (TLR-9; CpG ODN 1668), but not to ligands for TLR-4 (lipopolysaccharide [LPS]). Unlike human IPCs which produce little IL-12p70, mouse IPCs produce IL-12p70 in response to CpG ODN 1668 and herpes simplex virus. This study demonstrates that the development of murine CD11c +CD11b B220 +Gr-1 + IPCs and CD11c +CD11b +B220 myeloid DCs is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. Human IPCs and mouse IPCs display different ability to produce IL-12p70. Large numbers of mouse IPCs can now be obtained from total bone marrow culture.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          The nature of the principal type 1 interferon-producing cells in human blood.

          Interferons (IFNs) are the most important cytokines in antiviral immune responses. "Natural IFN-producing cells" (IPCs) in human blood express CD4 and major histocompatibility complex class II proteins, but have not been isolated and further characterized because of their rarity, rapid apoptosis, and lack of lineage markers. Purified IPCs are here shown to be the CD4(+)CD11c- type 2 dendritic cell precursors (pDC2s), which produce 200 to 1000 times more IFN than other blood cells after microbial challenge. pDC2s are thus an effector cell type of the immune system, critical for antiviral and antitumor immune responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus.

            Dendritic cells (DCs) are important in regulating both immunity and tolerance. Hence, we hypothesized that systemic lupus erythematosus (SLE), an autoimmune disease characterized by autoreactive B and T cells, may be caused by alterations in the functions of DCs. Consistent with this, monocytes from SLE patients' blood were found to function as antigen-presenting cells, in vitro. Furthermore, serum from SLE patients induced normal monocytes to differentiate into DCs. These DCs could capture antigens from dying cells and present them to CD4-positive T cells. The capacity of SLE patients' serum to induce DC differentiation correlated with disease activity and depended on the actions of interferon-alpha (IFN-alpha). Thus, unabated induction of DCs by IFN-alpha may drive the autoimmune response in SLE.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology.

              We show here that mouse interferon-alpha (IFN-alpha)-producing cells (mIPCs) are a unique subset of immature antigen-presenting cells (APCs) that secrete IFN-alpha upon stimulation with viruses. mIPCs have a plasmacytoid morphology, can be stained with an antibody to Ly6G and Ly6C (anti-Ly6G/C) and are Ly6C+B220+CD11cloCD4+; unlike other dendritic cell subsets, however, they do not express CD8alpha or CD11b. Although mIPCs undergo apoptosis in vitro, stimulation with viruses, IFN-alpha or CpG oligonucleotides enhanced their survival and T cell stimulatory activity. In vivo, mIPCs were the main producers of IFN-alpha in cytomegalovirus-infected mice, as depletion of Ly6G+/C+ cells abrogated IFN-alpha production. mIPCs produced interleukin 12 (IL-12) in response to viruses and CpG oligodeoxynucleotides, but not bacterial products. Although different pathogens can selectively engage various APC subsets for IL-12 production, IFN-alpha production is restricted to mIPCs' response to viral infection.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                1 April 2002
                : 195
                : 7
                : 953-958
                Affiliations
                [1 ]DNAX Research Institute, Palo Alto, CA 94304
                [2 ]Schering-Plough Laboratory for Immunological Research, 69571 Dardilly, France
                Author notes

                Address correspondence to Yong-Jun Liu, DNAX Research Institute, 901 California Ave., Palo Alto, CA 94304-1104. Phone: 650-496-1157; Fax: 650-496-1200; E-mail: yong-jun.liu@ 123456dnax.org

                Article
                020045
                10.1084/jem.20020045
                2193725
                11927638
                c66505b8-4e91-48f8-8364-3fd071ccd611
                Copyright © 2002, The Rockefeller University Press
                History
                : 10 January 2002
                : 30 January 2002
                : 15 February 2002
                Categories
                Brief Definitive Report

                Medicine
                antiviral immune response,pre-dc2,ipc,t lymphocyte,innate immunity
                Medicine
                antiviral immune response, pre-dc2, ipc, t lymphocyte, innate immunity

                Comments

                Comment on this article