Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus that can give rise to cancers of both B-cell and epithelial cell origin. In EBV-induced cancers of epithelial origin, including nasopharyngeal carcinomas (NPCs) and gastric carcinomas, the latent EBV genome expresses very high levels of a cluster of 22 viral pre-miRNAs, called the miR-BARTs, and these have previously been shown to confer a degree of resistance to pro-apoptotic drugs. Here, we present an analysis of the ability of individual miR-BART pre-miRNAs to confer an anti-apoptotic phenotype and report that five of the 22 miR-BARTs demonstrate this ability. We next used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) to globally identify the mRNA targets bound by these miR-BARTs in latently infected epithelial cells. This led to the identification of ten mRNAs encoding pro-apoptotic mRNA targets, all of which could be confirmed as valid targets for the five anti-apoptotic miR-BARTs by indicator assays and by demonstrating that ectopic expression of physiological levels of the relevant miR-BART in the epithelial cell line AGS resulted in a significant repression of the target mRNA as well as the encoded protein product. Using RNA interference, we further demonstrated that knockdown of at least seven of these cellular miR-BART target transcripts phenocopies the anti-apoptotic activity seen upon expression of the relevant EBV miR-BART miRNA. Together, these observations validate previously published reports arguing that the miR-BARTs can exert an anti-apoptotic effect in EBV-infected epithelial cells and provide a mechanistic explanation for this activity. Moreover, these results identify and validate a substantial number of novel mRNA targets for the anti-apoptotic miR-BARTs.
One important innate immune response to viral infection is apoptosis, also called programmed cell death, whereby the infected cells commit suicide rather than serve as factories for virus production. As a result, many viruses have developed strategies to inhibit apoptosis. Here, we demonstrate that five of the Epstein-Barr virus (EBV) miR-BART microRNAs that are expressed in EBV-transformed epithelial cell tumors display anti-apoptotic activity. We have identified ten cellular mRNAs that are bound and downregulated by one of these five anti-apoptotic microRNAs and show that this downregulation can explain the observed reduction in apoptosis in miR-BART-expressing cells. Together, these data demonstrate that the EBV miR-BARTs can help sustain latently EBV-infected cells in the face of pro-apoptotic innate immune signals and this may explain the resistance to DNA damaging agents, including chemotherapeutics and radiation, seen in a subset of EBV-induced epithelial tumors.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.