Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neuropeptide signaling systems - potential drug targets for parasite and pest control.

      Current Topics in Medicinal Chemistry
      Amino Acid Sequence, Animals, Antiparasitic Agents, pharmacology, therapeutic use, Arthropods, drug effects, Drug Delivery Systems, Helminths, Neuropeptides, chemical synthesis, Parasites, Parasitic Diseases, Animal, drug therapy, prevention & control, Signal Transduction, Structure-Activity Relationship

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Current problems of drug resistance in parasites and pests demand the identification of new targets and their exploitation through novel drug design and development programs. Neuropeptide signaling systems in helminths (nematodes and platyhelminths = worms) and arthropods are well developed and complex, play a crucial role in many aspects of their biology, and appear to have significant potential as targets for novel drugs. The best-known neuropeptide family in invertebrates is the FMRFamide-related peptides (FaRPs). Amongst many roles, FaRPs potently influence motor function. The genome sequencing projects of Drosophila melanogaster and Caenorhabditis elegans have revealed unexpected complexity within the FaRPergic systems of arthropods and nematodes, although available evidence for platyhelminths indicates structural and functional simplicity. Regardless of these differences, FaRPs potently modulate motor function in arthropods, nematodes and platyhelminths and there appears to be at least some commonality in the FaRPergic signaling systems therein. Moreover, there is now increasing evidence of cross-phyla activity for individual FaRPs, providing clear signals of opportunities for target selection and the identification and development of broad-spectrum drugs.

          Related collections

          Author and article information

          Comments

          Comment on this article