Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fusion of Constitutive Membrane Traffic with the Cell Surface Observed by Evanescent Wave Microscopy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Monitoring the fusion of constitutive traffic with the plasma membrane has remained largely elusive. Ideally, fusion would be monitored with high spatial and temporal resolution. Recently, total internal reflection (TIR) microscopy was used to study regulated exocytosis of fluorescently labeled chromaffin granules. In this technique, only the bottom cellular surface is illuminated by an exponentially decaying evanescent wave of light. We have used a prism type TIR setup with a penetration depth of ∼50 nm to monitor constitutive fusion of vesicular stomatitis virus glycoprotein tagged with the yellow fluorescent protein. Fusion of single transport containers (TCs) was clearly observed and gave a distinct analytical signature. TCs approached the membrane, appeared to dock, and later rapidly fuse, releasing a bright fluorescent cloud into the membrane. Observation and analysis provided insight about their dynamics, kinetics, and position before and during fusion. Combining TIR and wide-field microscopy allowed us to follow constitutive cargo from the Golgi complex to the cell surface. Our observations include the following: (1) local restrained movement of TCs near the membrane before fusion; (2) apparent anchoring near the cell surface; (3) heterogeneously sized TCs fused either completely; or (4) occasionally larger tubular-vesicular TCs partially fused at their tips.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Protein sorting by transport vesicles.

          Eukaryotic life depends on the spatial and temporal organization of cellular membrane systems. Recent advances in understanding the machinery of vesicle transport have established general principles that underlie a broad variety of physiological processes, including cell surface growth, the biogenesis of distinct intracellular organelles, endocytosis, and the controlled release of hormones and neurotransmitters.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Kinetic Analysis of Secretory Protein Traffic and Characterization of Golgi to Plasma Membrane Transport Intermediates in Living Cells

            Quantitative time-lapse imaging data of single cells expressing the transmembrane protein, vesicular stomatitis virus ts045 G protein fused to green fluorescent protein (VSVG–GFP), were used for kinetic modeling of protein traffic through the various compartments of the secretory pathway. A series of first order rate laws was sufficient to accurately describe VSVG–GFP transport, and provided compartment residence times and rate constants for transport into and out of the Golgi complex and delivery to the plasma membrane. For ER to Golgi transport the mean rate constant (i.e., the fraction of VSVG–GFP moved per unit of time) was 2.8% per min, for Golgi to plasma membrane transport it was 3.0% per min, and for transport from the plasma membrane to a degradative site it was 0.25% per min. Because these rate constants did not change as the concentration of VSVG–GFP in different compartments went from high (early in the experiment) to low (late in the experiment), secretory transport machinery was never saturated during the experiments. The processes of budding, translocation, and fusion of post-Golgi transport intermediates carrying VSVG– GFP to the plasma membrane were also analyzed using quantitative imaging techniques. Large pleiomorphic tubular structures, rather than small vesicles, were found to be the primary vehicles for Golgi to plasma membrane transport of VSVG–GFP. These structures budded as entire domains from the Golgi complex and underwent dynamic shape changes as they moved along microtubule tracks to the cell periphery. They carried up to 10,000 VSVG–GFP molecules and had a mean life time in COS cells of 3.8 min. In addition, they fused with the plasma membrane without intersecting other membrane transport pathways in the cell. These properties suggest that the post-Golgi intermediates represent a unique transport organelle for conveying large quantities of protein cargo from the Golgi complex directly to the plasma membrane.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transport, docking and exocytosis of single secretory granules in live chromaffin cells.

              Neurons maintain a limited pool of synaptic vesicles which are docked at active zones and are awaiting exocytosis. By contrast, endocrine cells releasing large, dense-core secretory granules have no active zones, and there is disagreement about the size and even the existence of the docked pool. It is not known how, and how rapidly, secretory vesicles are replaced at exocytic sites in either neurons or endocrine cells. By using electron microscopy, we have now been able to identify a pool of docked granules in chromaffin cells that is selectively depleted when cells secrete. With evanescent-wave fluorescence microscopy, we observed single granules undergoing exocytosis and leaving behind patches of bare plasmalemma. Fresh granules travelled to the plasmalemma at a top speed of 114 nm s(-1), taking an average of 6 min to arrive. On arrival, their motility diminished 4-fold, probably as a result of docking. Some granules detached and returned to the cytosol. We conclude that a large pool of docked granules turns over slowly, that granules move actively to their docking sites, that docking is reversible, and that the 'rapidly releasable pool' measured electrophysiologically represents a small subset of docked granules.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                3 April 2000
                : 149
                : 1
                : 33-40
                Affiliations
                [a ]Cell Biology/Biophysics Programme, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
                [b ]Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
                [c ]Vollum Institute, Portland, Oregon 97210
                Article
                0001013
                10.1083/jcb.149.1.33
                2175107
                10747085
                ebdf86a1-c3b3-4f92-be6e-b530322c69dc
                © 2000 The Rockefeller University Press
                History
                : 5 January 2000
                : 14 February 2000
                : 1 March 2000
                Categories
                Original Article

                Cell biology
                total internal reflection,membrane fusion,green fluorescent protein,exocytosis,docking

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content407

                Cited by23

                Most referenced authors209