Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Solution structure of prosurvival Mcl-1 and characterization of its binding by proapoptotic BH3-only ligands.

      The Journal of Biological Chemistry
      American Society for Biochemistry & Molecular Biology (ASBMB)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The B cell lymphoma-2 (Bcl-2) homologs myeloid cell leukemia-1 (Mcl-1) and A1 are prosurvival factors that selectively bind a subset of proapoptotic Bcl homology (BH) 3-only proteins. To investigate the molecular basis of the selectivity, we determined the solution structure of the C-terminal Bcl-2-like domain of Mcl-1. This domain shares features expected of a prosurvival Bcl-2 protein, having a helical fold centered on a core hydrophobic helix and a surface-exposed hydrophobic groove for binding its cognate partners. A number of residues in the binding groove differentiate Mcl-1 from its homologs, and in contrast to other Bcl-2 homologs, Mcl-1 has a binding groove in a conformation intermediate between the open structures characterized by peptide complexes and the closed state observed in unliganded structures. Mutagenesis of potential binding site residues was used to probe the contributions of groove residues to the binding properties of Mcl-1. Although mutations in Mcl-1 had little impact on binding, a single mutation in the BH3-only ligand Bad enabled it to bind both Mcl-1 and A1 while retaining its binding to Bcl-2, Bcl-xL, and Bcl-w. Elucidating the selective action of certain BH3-only ligands is required for delineating their mode of action and will aid the search for effective BH3-mimetic drugs.

          Related collections

          Author and article information

          Journal
          15550399
          10.1074/jbc.M411434200

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.