Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases.

      Molecular Endocrinology
      Animals, Cell Division, Cells, Cultured, Diet, Disease Models, Animal, Female, Genotype, Inflammatory Bowel Diseases, parasitology, pathology, physiopathology, Lymphocytes, immunology, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Ovalbumin, Receptors, Calcitriol, deficiency, genetics, physiology, Schistosomiasis mansoni

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The active form of vitamin D (1,25D3) suppressed the development of animal models of human autoimmune diseases including experimental inflammatory bowel disease (IBD). The vitamin D receptor (VDR) is required for all known biologic effects of vitamin D. Here we show that VDR deficiency (knockout, KO) resulted in severe inflammation of the gastrointestinal tract in two different experimental models of IBD. In the CD45RB transfer model of IBD, CD4+/CD45RBhigh T cells from VDR KO mice induced more severe colitis than wild-type CD4+/CD45RBhigh T cells. The second model of IBD used was the spontaneous colitis that develops in IL-10 KO mice. VDR/IL-10 double KO mice developed accelerated IBD and 100% mortality by 8 wk of age. At 8 wk of age, all of the VDR and IL-10 single KO mice were healthy. Rectal bleeding was observed in every VDR/IL-10 KO mouse. Splenocytes from the VDR/IL-10 double KO mice cells transferred IBD symptoms. The severe IBD in VDR/IL-10 double KO mice is a result of the immune system and not a result of altered calcium homeostasis, or gastrointestinal tract function. The data establishes an essential role for VDR signaling in the regulation of inflammation in the gastrointestinal tract.

          Related collections

          Author and article information

          Comments

          Comment on this article