48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Computational Identification and Analysis of the Key Biosorbent Characteristics for the Biosorption Process of Reactive Black 5 onto Fungal Biomass

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The performances of nine biosorbents derived from dead fungal biomass were investigated for their ability to remove Reactive Black 5 from aqueous solution. The biosorption data for removal of Reactive Black 5 were readily modeled using the Langmuir adsorption isotherm. Kinetic analysis based on both pseudo-second-order and Weber-Morris models indicated intraparticle diffusion was the rate limiting step for biosorption of Reactive Black 5 on to the biosorbents. Sorption capacities of the biosorbents were not correlated with the initial biosorption rates. Sensitivity analysis of the factors affecting biosorption examined by an artificial neural network model showed that pH was the most important parameter, explaining 22%, followed by nitrogen content of biosorbents (16%), initial dye concentration (15%) and carbon content of biosorbents (10%). The biosorption capacities were not proportional to surface areas of the sorbents, but were instead influenced by their chemical element composition. The main functional groups contributing to dye sorption were amine, carboxylic, and alcohol moieties. The data further suggest that differences in carbon and nitrogen contents of biosorbents may be used as a selection index for identifying effective biosorbents from dead fungal biomass.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: not found
          • Article: not found

          THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Non-conventional low-cost adsorbents for dye removal: a review.

            Adsorption techniques are widely used to remove certain classes of pollutants from waters, especially those that are not easily biodegradable. Dyes represent one of the problematic groups. Currently, a combination of biological treatment and adsorption on activated carbon is becoming more common for removal of dyes from wastewater. Although commercial activated carbon is a preferred sorbent for color removal, its widespread use is restricted due to high cost. As such, alternative non-conventional sorbents have been investigated. It is well-known that natural materials, waste materials from industry and agriculture and biosorbents can be obtained and employed as inexpensive sorbents. In this review, an extensive list of sorbent literature has been compiled. The review (i) presents a critical analysis of these materials; (ii) describes their characteristics, advantages and limitations; and (iii) discusses various mechanisms involved. It is evident from a literature survey of about 210 recent papers that low-cost sorbents have demonstrated outstanding removal capabilities for certain dyes. In particular, chitosan might be a promising adsorbent for environmental and purification purposes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fungal dye decolourization: recent advances and future potential.

              Dyes released by the textile industries pose a threat to the environmental safety. Recently, dye decolourization through biological means has gained momentum as these are cheap and can be applied to wide range of dyes. This review paper focuses on the decolourization of dye wastewaters through fungi via two processes (biosorption and bioaccumulation) and discusses the effect of various process parameters like pH, temperature, dye concentration etc. on the dye removing efficiency of different fungi. Various enzymes involved in the degradation of the dyes and the metabolites thus formed have been compiled. Genetic manipulations of microorganisms for production of more efficient biological agents, various bioreactor configurations and the application of purified enzymes for decolourization, which constitute some of the recent advances in this field, have also been reviewed. The studies discussed in this paper indicate fungal decolourization has a great potential to be developed further as a decentralized wastewater treatment technology for small textile or dyeing units. However, further research work is required to study the toxicity of the metabolites of dye degradation and the possible fate of the utilized biomass in order to ensure the development of an eco-friendly technology.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                19 March 2012
                : 7
                : 3
                : e33551
                Affiliations
                [1 ]College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
                [2 ]Taizhou Municipal Hospital, Taizhou, People's Republic of China
                [3 ]Department of Environmental Science, University of California Riverside, Riverside, California, United States of America
                University of Houston, United States of America
                Author notes

                Conceived and designed the experiments: YY. Performed the experiments: GW. Analyzed the data: ZL. Contributed reagents/materials/analysis tools: XZ YY DC. Wrote the paper: YZ.

                Article
                PONE-D-11-22826
                10.1371/journal.pone.0033551
                3307745
                22442697
                c0e0ad2f-ed7f-4ecf-a050-6038e4b997b2
                Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 November 2011
                : 11 February 2012
                Page count
                Pages: 8
                Categories
                Research Article
                Biology
                Biochemistry
                Metabolism
                Biophysics
                Microbiology
                Mycology
                Chemistry
                Applied Chemistry
                Environmental Chemistry

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content709

                Cited by4

                Most referenced authors252