Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
76
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      c-FLIP Mediates Resistance of Hodgkin/Reed-Sternberg Cells to Death Receptor–induced Apoptosis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resistance to death receptor–mediated apoptosis is supposed to be important for the deregulated growth of B cell lymphoma. Hodgkin/Reed-Sternberg (HRS) cells, the malignant cells of classical Hodgkin's lymphoma (cHL), resist CD95-induced apoptosis. Therefore, we analyzed death receptor signaling, in particular the CD95 pathway, in these cells. High level CD95 expression allowed a rapid formation of the death-inducing signaling complex (DISC) containing Fas-associated death domain–containing protein (FADD), caspase-8, caspase-10, and most importantly, cellular FADD-like interleukin 1β–converting enzyme-inhibitory protein (c-FLIP). The immunohistochemical analysis of the DISC members revealed a strong expression of CD95 and c-FLIP overexpression in 55 out of 59 cases of cHL. FADD overexpression was detectable in several cases. Triggering of the CD95 pathway in HRS cells is indicated by the presence of CD95L in cells surrounding them as well as confocal microscopy showing c-FLIP predominantly localized at the cell membrane. Elevated c-FLIP expression in HRS cells depends on nuclear factor (NF)-κB. Despite expression of other NF-κB–dependent antiapoptotic proteins, the selective down-regulation of c-FLIP by small interfering RNA oligoribonucleotides was sufficient to sensitize HRS cells to CD95 and tumor necrosis factor–related apoptosis-inducing ligand–induced apoptosis. Therefore, c-FLIP is a key regulator of death receptor resistance in HRS cells.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          AP-1 function and regulation.

          AP-1 (activating protein-1) is a collective term referring to dimeric transcription factors composed of Jun, Fos or ATF (activating transcription factor) subunits that bind to a common DNA site, the AP-1-binding site. As the complexity of our knowledge of AP-1 factors has increased, our understanding of their physiological function has decreased. This trend, however, is beginning to be reversed due to the recent studies of gene-knockout mice and cell lines deficient in specific AP-1 components. Such studies suggest that different AP-1 factors may regulate different target genes and thus execute distinct biological functions. Also, the involvement of AP-1 factors in functions such as cell proliferation and survival has been made somewhat clearer as a result of such studies. In addition, there has been considerable progress in understanding some of the mechanisms and signaling pathways involved in the regulation of AP-1 activity. In addition to regulation by heterodimerization between Jun, Fos and ATF proteins, AP-1 activity is regulated through interactions with specific protein kinases and a variety of transcriptional coactivators.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhibition of death receptor signals by cellular FLIP.

            The widely expressed protein Fas is a member of the tumour necrosis factor receptor family which can trigger apoptosis. However, Fas surface expression does not necessarily render cells susceptible to Fas ligand-induced death signals, indicating that inhibitors of the apoptosis-signalling pathway must exist. Here we report the characterization of an inhibitor of apoptosis, designated FLIP (for FLICE-inhibitory protein), which is predominantly expressed in muscle and lymphoid tissues. The short form, FLIPs, contains two death effector domains and is structurally related to the viral FLIP inhibitors of apoptosis, whereas the long form, FLIP(L), contains in addition a caspase-like domain in which the active-centre cysteine residue is substituted by a tyrosine residue. FLIPs and FLIP(L) interact with the adaptor protein FADD and the protease FLICE, and potently inhibit apoptosis induced by all known human death receptors. FLIP(L) is expressed during the early stage of T-cell activation, but disappears when T cells become susceptible to Fas ligand-mediated apoptosis. High levels of FLIP(L) protein are also detectable in melanoma cell lines and malignant melanoma tumours. Thus FLIP may be implicated in tissue homeostasis as an important regulator of apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis.

              Using the cytoplasmic domain of Fas in the yeast two-hybrid system, we have identified a novel interacting protein, FADD, which binds Fas and Fas-FD5, a mutant of Fas possessing enhanced killing activity, but not the functionally inactive mutants Fas-LPR and Fas-FD8. FADD contains a death domain homologous to the death domains of Fas and TNFR-1. A point mutation in FADD, analogous to the lpr mutation of Fas, abolishes its ability to bind Fas, suggesting a death domain to death domain interaction. Overexpression of FADD in MCF7 and BJAB cells induces apoptosis, which, like Fas-induced apoptosis, is blocked by CrmA, a specific inhibitor of the interleukin-1 beta-converting enzyme. These findings suggest that FADD may play an important role in the proximal signal transduction of Fas.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                19 April 2004
                : 199
                : 8
                : 1041-1052
                Affiliations
                [1 ]Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
                [2 ]Humboldt-University, Charité, Robert-Rössle-Klinik, 13125 Berlin, Germany
                [3 ]Universitätsklinikum Benjamin Franklin, Institute for Pathology, Free University, 12200 Berlin, Germany
                [4 ]Institute of Molecular Pharmacology, 13125 Berlin, Germany
                [5 ]Ribopharma AG, 95326 Kulmbach, Germany
                Author notes

                Address correspondence to Stephan Mathas, Max-Delbrück-Center for Molecular Medicine, FG Dörken, D-13125 Berlin, Germany. Phone: 49-30-94062720; Fax: 49-30-94063124; email: mathas@ 123456rrk-berlin.de

                Article
                20031080
                10.1084/jem.20031080
                2211891
                15078899
                bf7371a5-9df9-43f7-98ee-54eb33c0ec92
                Copyright © 2004, The Rockefeller University Press
                History
                : 1 July 2003
                : 2 March 2004
                Categories
                Article

                Medicine
                sirna,nf-κb,lymphoma,cd95 antigen,trail protein
                Medicine
                sirna, nf-κb, lymphoma, cd95 antigen, trail protein

                Comments

                Comment on this article