Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Epigenetics and the placenta.

      Human Reproduction Update
      DNA Methylation, Environment, Epigenesis, Genetic, Female, Gene Expression Regulation, Developmental, Genomic Imprinting, Histones, metabolism, Humans, Maternal Exposure, Placenta, growth & development, pathology, Placenta Diseases, genetics, Pregnancy, RNA, Untranslated, physiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The placenta is of utmost importance for intrauterine fetal development and growth. Deregulation of placentation can lead to adverse outcomes for both mother and fetus, e.g. gestational trophoblastic disease (GTD), pre-eclampsia and fetal growth retardation. A significant factor in placental development and function is epigenetic regulation. This review summarizes the current knowledge in the field of epigenetics in relation to placental development and function. Relevant studies were identified by searching PubMed, Medline and reference sections of all relevant studies and reviews. Epigenetic regulation of the placenta evolves during preimplantation development and further gestation. Epigenetic marks, like DNA methylation, histone modifications and non-coding RNAs, affect gene expression patterns. These expression patterns, including the important parent-of-origin-dependent gene expression resulting from genomic imprinting, play a pivotal role in proper fetal and placental development. Disturbed placental epigenetics has been demonstrated in cases of intrauterine growth retardation and small for gestational age, and also appears to be involved in the pathogenesis of pre-eclampsia and GTD. Several environmental effects have been investigated so far, e.g. ethanol, oxygen tension as well as the effect of several aspects of assisted reproduction technologies on placental epigenetics. Studies in both animals and humans have made it increasingly clear that proper epigenetic regulation of both imprinted and non-imprinted genes is important in placental development. Its disturbance, which can be caused by various environmental factors, can lead to abnormal placental development and function with possible consequences for maternal morbidity, fetal development and disease susceptibility in later life.

          Related collections

          Author and article information

          Comments

          Comment on this article