RNA polymerase II synthesizes a diverse set of transcripts including both protein-coding and non-coding RNAs. One major difference between these two classes of transcripts is the mechanism of termination. Messenger RNA transcripts terminate downstream of the coding region in a process that is coupled to cleavage and polyadenylation reactions. Non-coding transcripts like Saccharomyces cerevisiae snoRNAs terminate in a process that requires the RNA–binding proteins Nrd1, Nab3, and Sen1. We report here the transcriptome-wide distribution of these termination factors. These data sets derived from in vivo protein–RNA cross-linking provide high-resolution definition of non-poly(A) terminators, identify novel genes regulated by attenuation of nascent transcripts close to the promoter, and demonstrate the widespread occurrence of Nrd1-bound 3′ antisense transcripts on genes that are poorly expressed. In addition, we show that Sen1 does not cross-link efficiently to many expected non-coding RNAs but does cross-link to the 3′ end of most pre–mRNA transcripts, suggesting an extensive role in mRNA 3′ end formation and/or termination.
Transcription in eukaryotes is widespread including both protein-coding transcripts and an increasing number of non-coding RNAs. Here we present the results of transcriptome-wide mapping of a set of yeast RNA–binding proteins that control expression of some protein-coding genes and a number of novel non-coding RNAs. The yeast Nrd1-Nab3-Sen1 pathway is required for termination and exosome-mediated processing of non-coding RNA polymerase II transcripts. Our data show that these components bind unexpected targets including a large number of antisense transcripts originating from the 3′ end of genes that are poorly expressed in the sense direction. We also show that Sen1 helicase, involved in termination of non-coding RNAs, is also present at the 3′ end of mRNAs, suggesting a more fundamental role in transcription termination. Mis-regulation of transcription is the underlying cause of many disease states. For example, mutation of the human Sen1 gene, senataxin, causes a range of neurodegenerative disorders. Understanding the roles of yeast RNA–binding proteins in controlling termination of coding and non-coding RNAs will be useful in deciphering the mechanism of these proteins in human cells.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.