We show that c-myc is an inducible gene that is regulated by specific growth signals in a cell-cycle-dependent manner. Specifically, agents that initiate the first phase of a proliferative response in lymphocytes (lipopolysaccharide or Concanavalin A) and fibroblasts (platelet-derived growth factor) induce c-myc mRNA. Within one to three hr after the addition of these mitogens to the appropriate cells, c-myc mRNA concentration is increased between 10- and 40-fold. This induction of c-myc mRNA occurs in the presence of cycloheximide and, therefore, does not require the synthesis of new protein species. Consequently, the induction of c-myc mRNA is not secondary to growth. In addition, c-myc mRNA is "superinduced" by the combination of cycloheximide and mitogen, a finding consistent with a model that a labile protein may regulate c-myc levels in these cells. Further, this work suggests a regulatory linkage between the function of two oncogenes--c-myc and c-sis--the latter being the putative structural gene for PDGF.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.