Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome.

      Archives of general psychiatry
      Adolescent, Adult, Cerebral Cortex, metabolism, physiopathology, Deoxyglucose, analogs & derivatives, diagnostic use, Extrapyramidal Tracts, Female, Fluorodeoxyglucose F18, Glucose, Gyrus Cinguli, Hippocampus, Humans, Limbic System, Male, Psychiatric Status Rating Scales, Schizophrenia, diagnosis, Tomography, Emission-Computed

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A hypothesis of psychosis localization in schizophrenia was derived from studying metabolic alterations in rat brain in response to phencyclidine hydrochloride administration. Since phencyclidine and its selective agonist dizocilpine maleate (MK801) induced overlapping and long-lasting metabolic alterations predominantly in limbic areas, the hypothesis developed that schizophrenic patients with psychosis would evidence functional abnormalities in limbic circuits compared with normal controls. Accordingly, 12 actively psychotic, drug-free patients with schizophrenia and matched normal controls underwent functional brain scans using positron emission tomography and fluorodeoxyglucose. Regions of interest were identified on five matched axial slices in each patient and control subject, and average metabolic rates were calculated. Patients with schizophrenia showed a significantly lower regional cerebral metabolic rate of glucose in the hippocampus and the anterior cingulate cortex than did normal controls, but not in neocortical areas or in the extrapyramidal system. When the group of schizophrenic patients was divided into deficit and nondeficit types, a preliminary exploratory analysis suggested thalamic, frontal, and parietal cortical hypometabolism in the deficit subgroup, with normal metabolism in the nondeficit patient group in those areas; in contrast, hippocampal and anterior cingulate cortical metabolism was reduced in both deficit and nondeficit subtypes. These results suggest that the limbic system, especially the hippocampus, is functionally involved in schizophrenic psychosis and that different manifestations of schizophrenia may involve different neuronal circuits.

          Related collections

          Author and article information

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content145

          Cited by48