Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anti-influenza virus effect of aqueous extracts from dandelion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Human influenza is a seasonal disease associated with significant morbidity and mortality. Anti-flu Traditional Chinese Medicine (TCM) has played a significant role in fighting the virus pandemic. In TCM, dandelion is a commonly used ingredient in many therapeutic remedies, either alone or in conjunction with other natural substances. Evidence suggests that dandelion is associated with a variety of pharmacological activities. In this study, we evaluated anti-influenza virus activity of an aqueous extract from dandelion, which was tested for in vitro antiviral activity against influenza virus type A, human A/PR/8/34 and WSN (H1N1).

          Results

          Results obstained using antiviral assays, minigenome assay and real-time reverse transcription-PCR analysis showed that 0.625-5 mg/ml of dandelion extracts inhibited infections in Madin-Darby canine kidney (MDCK) cells or Human lung adenocarcinoma cell line (A549) of PR8 or WSN viruses, as well as inhibited polymerase activity and reduced virus nucleoprotein (NP) RNA level. The plant extract did not exhibit any apparent negative effects on cell viability, metabolism or proliferation at the effective dose. This result is consistent with the added advantage of lacking any reported complications of the plant's utility in traditional medicine over several centuries.

          Conclusion

          The antiviral activity of dandelion extracts indicates that a component or components of these extracts possess anti-influenza virus properties. Mechanisms of reduction of viral growth in MDCK or A549 cells by dandelion involve inhibition on virus replication.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls.

          In wild aquatic birds and poultry around the world, influenza A viruses carrying 15 antigenic subtypes of hemagglutinin (HA) and 9 antigenic subtypes of neuraminidase (NA) have been described. Here we describe a previously unidentified antigenic subtype of HA (H16), detected in viruses circulating in black-headed gulls in Sweden. In agreement with established criteria for the definition of antigenic subtypes, hemagglutination inhibition assays and immunodiffusion assays failed to detect specific reactivity between H16 and the previously described subtypes H1 to H15. Genetically, H16 HA was found to be distantly related to H13 HA, a subtype also detected exclusively in shorebirds, and the amino acid composition of the putative receptor-binding site of H13 and H16 HAs was found to be distinct from that in HA subtypes circulating in ducks and geese. The H16 viruses contained NA genes that were similar to those of other Eurasian shorebirds but genetically distinct from N3 genes detected in other birds and geographical locations. The European gull viruses were further distinguishable from other influenza A viruses based on their PB2, NP, and NS genes. Gaining information on the full spectrum of avian influenza A viruses and creating reagents for their detection and identification will remain an important task for influenza surveillance, outbreak control, and animal and public health. We propose that sequence analyses of HA and NA genes of influenza A viruses be used for the rapid identification of existing and novel HA and NA subtypes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oseltamivir resistance during treatment of influenza A (H5N1) infection.

            Influenza A (H5N1) virus with an amino acid substitution in neuraminidase conferring high-level resistance to oseltamivir was isolated from two of eight Vietnamese patients during oseltamivir treatment. Both patients died of influenza A (H5N1) virus infection, despite early initiation of treatment in one patient. Surviving patients had rapid declines in the viral load to undetectable levels during treatment. These observations suggest that resistance can emerge during the currently recommended regimen of oseltamivir therapy and may be associated with clinical deterioration and that the strategy for the treatment of influenza A (H5N1) virus infection should include additional antiviral agents. Copyright 2005 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resistant influenza A viruses in children treated with oseltamivir: descriptive study.

              Oseltamivir is an effective inhibitor of influenza virus neuraminidase. Although viruses resistant to oseltamivir emerge less frequently than those resistant to amantadine or rimantadine, information on oseltamivir-resistant viruses arising during clinical use of the drug in children is limited. Our aim was to investigate oseltamivir resistance in a group of children treated for influenza. We analysed influenza A viruses (H3N2) collected from 50 children before and during treatment with oseltamivir. We sequenced the genes for neuraminidase and haemagglutinin and studied the mutant neuraminidases for their sensitivity to oseltamivir carboxylate. We found neuraminidase mutations in viruses from nine patients (18%), six of whom had mutations at position 292 (Arg292Lys) and two at position 119 (Glu119Val), which are known to confer resistance to neuraminidase inhibitors. We also identified another mutation (Asn294Ser) in one patient. Sensitivity testing to oseltamivir carboxylate revealed that the neuraminidases of viruses that have an Arg292Lys, Glu119Val, or Asn294Ser mutation were about 10(4)-10(5)-fold, 500-fold, or 300-fold more resistant than their pretreatment neuraminidases, respectively. Oseltamivir-resistant viruses were first detected at day 4 of treatment and on each successive day of the study. More than 10(3) infectious units per mL of virus were detected in some of the patients who did not shed drug-resistant viruses, even after 5 days of treatment. Oseltamivir-resistant mutants in children being treated for influenza with oseltamivir arise more frequently than previously reported. Furthermore, children can be a source of viral transmission, even after 5 days of treatment with oseltamivir.
                Bookmark

                Author and article information

                Journal
                Virol J
                Virology Journal
                BioMed Central
                1743-422X
                2011
                14 December 2011
                : 8
                : 538
                Affiliations
                [1 ]CAS Key Laboratory of Pathogenic Microbiology and Immunology (CASPMI), Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Beijing 100101, PR China
                [2 ]Graduate University of Chinese Academy of Sciences, 1 Beichen West Road, Beijing 100101, PR China
                [3 ]Biochemistry Teaching and Research office of Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, PR China
                [4 ]China-Japan Joint Laboratory of Molecular Immunology and Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
                Article
                1743-422X-8-538
                10.1186/1743-422X-8-538
                3265450
                22168277
                8cba512c-8772-4460-b64e-9d0b8ef12ff8
                Copyright ©2011 He et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 August 2011
                : 14 December 2011
                Categories
                Research

                Microbiology & Virology
                dandelion,anti-influenza virus,traditional chinese medicine
                Microbiology & Virology
                dandelion, anti-influenza virus, traditional chinese medicine

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content875

                Cited by45

                Most referenced authors272