2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The structural insights of stem cell factor receptor (c-Kit) interaction with tyrosine phosphatase-2 (Shp-2): An in silico analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Stem cell factor (SCF) receptor c-Kit is recognized as a key signaling molecule, which transduces signals for the proliferation, differentiation and survival of stem cells. Binding of SCF to its receptor triggers transactivation, leading to the recruitment of kinases and phosphatases to the docking platforms of c-Kit catalytic domain. Tyrosine phosphatase-1 (Shp-1) deactivates/attenuates 'Kit' kinase activity. Whereas, Asp816Val mutation in the Kit activation loop transforms kinase domain to a constitutively activated state (switch off-to-on state), in a ligand-independent manner. This phenomenon completely abrogates negative regulation of Shp-1. To predict the possible molecular basis of interaction between c-Kit and Shp-1, we have performed an in silico protein-protein docking study between crystal structure of activated c-Kit (phosphorylated c-Kit) and full length crystal structure of Shp-2, a close structural counterpart of Shp-1.

          Findings

          Study revealed a stretch of conserved amino acids (Lys818 to Ser821) in the Kit activation domain, which makes decisive H-bonds with N-sh2 and phosphotyrosine binding pocket residues of the phosphatase. These H-bonds may impose an inhibitory steric hindrance to the catalytic domain of c-Kit, there by blocking further interaction of the activation loop molecules with incoming kinases. We have also predicted a phosphotyrosine binding pocket in SH2 domains of Shp-1, which is found to be predominantly closer to a catalytic groove like structure in c-Kit kinase domain.

          Conclusions

          This study predicts that crucial hydrogen bonding between N-sh2 domain of Shp-1 and Kit activation loop can modulate the negative regulation of c-Kit kinase by Shp-1. Thus, this finding is expected to play a significant role in designing suitable gain-of-function c-Kit mutants for inducing conditional proliferation of hematopoietic stem cells.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Crystal structure of the tyrosine phosphatase SHP-2.

          The structure of the SHP-2 tyrosine phosphatase, determined at 2.0 angstroms resolution, shows how its catalytic activity is regulated by its two SH2 domains. In the absence of a tyrosine-phosphorylated binding partner, the N-terminal SH2 domain binds the phosphatase domain and directly blocks its active site. This interaction alters the structure of the N-SH2 domain, disrupting its phosphopeptide-binding cleft. Conversely, interaction of the N-SH2 domain with phosphopeptide disrupts its phosphatase recognition surface. Thus, the N-SH2 domain is a conformational switch; it either binds and inhibits the phosphatase, or it binds phosphoproteins and activates the enzyme. Recognition of bisphosphorylated ligands by the tandem SH2 domains is an integral element of this switch; the C-terminal SH2 domain contributes binding energy and specificity, but it does not have a direct role in activation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase.

            The activity of the c-Kit receptor protein-tyrosine kinase is tightly regulated in normal cells, whereas deregulated c-Kit kinase activity is implicated in the pathogenesis of human cancers. The c-Kit juxtamembrane region is known to have an autoinhibitory function; however the precise mechanism by which c-Kit is maintained in an autoinhibited state is not known. We report the 1.9-A resolution crystal structure of native c-Kit kinase in an autoinhibited conformation and compare it with active c-Kit kinase. Autoinhibited c-Kit is stabilized by the juxtamembrane domain, which inserts into the kinase-active site and disrupts formation of the activated structure. A 1.6-A crystal structure of c-Kit in complex with STI-571 (Imatinib or Gleevec) demonstrates that inhibitor binding disrupts this natural mechanism for maintaining c-Kit in an autoinhibited state. Together, these results provide a structural basis for understanding c-Kit kinase autoinhibition and will facilitate the structure-guided design of specific inhibitors that target the activated and autoinhibited conformations of c-Kit kinase.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms.

              The crystal structure of the Src SH2 domain complexed with a high affinity 11-residue phosphopeptide has been determined at 2.7 A resolution by X-ray diffraction. The peptide binds in an extended conformation and makes primary interactions with the SH2 domain at six central residues: PQ(pY)EEI. The phosphotyrosine and the isoleucine are tightly bound by two well-defined pockets on the protein surface, resulting in a complex that resembles a two-pronged plug engaging a two-holed socket. The glutamate residues are in solvent-exposed environments in the vicinity of basic side chains of the SH2 domain, and the two N-terminal residues cap the phosphotyrosine-binding site. The crystal structure of Src SH2 in the absence of peptide has been determined at 2.5 A resolution, and comparison with the structure of the high affinity complex reveals only localized and relatively small changes.
                Bookmark

                Author and article information

                Journal
                BMC Res Notes
                BMC Research Notes
                BioMed Central
                1756-0500
                2010
                22 January 2010
                : 3
                : 14
                Affiliations
                [1 ]Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
                [2 ]Stem Cell and Gene Therapy Research Lab, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
                [3 ]Department of Medicine, University College of Medical Sciences & Guru Teg Bahadur Hospital, University of Delhi, New Delhi, India
                [4 ]Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
                [5 ]Current Address: Department of Neuroscience, School of Medical Sciences, University Sains Malaysia, Malaysia
                Article
                1756-0500-3-14
                10.1186/1756-0500-3-14
                2826351
                20205869
                8511b939-4534-4486-b013-6650cf54d57d
                Copyright ©2010 Mukhopadhyay et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 August 2009
                : 22 January 2010
                Categories
                Short Report

                Medicine
                Medicine

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content554

                Most referenced authors634