Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
110
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Intrinsic Antiviral Defense to Incoming HSV-1 Genomes Includes Specific DNA Repair Proteins and Is Counteracted by the Viral Protein ICP0

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cellular restriction factors responding to herpesvirus infection include the ND10 components PML, Sp100 and hDaxx. During the initial stages of HSV-1 infection, novel sub-nuclear structures containing these ND10 proteins form in association with incoming viral genomes. We report that several cellular DNA damage response proteins also relocate to sites associated with incoming viral genomes where they contribute to the cellular front line defense. We show that recruitment of DNA repair proteins to these sites is independent of ND10 components, and instead is coordinated by the cellular ubiquitin ligases RNF8 and RNF168. The viral protein ICP0 targets RNF8 and RNF168 for degradation, thereby preventing the deposition of repressive ubiquitin marks and counteracting this repair protein recruitment. This study highlights important parallels between recognition of cellular DNA damage and recognition of viral genomes, and adds RNF8 and RNF168 to the list of factors contributing to the intrinsic antiviral defense against herpesvirus infection.

          Author Summary

          The cellular DNA damage response pathway monitors damage to genomic DNA. We investigated whether cellular DNA damage response proteins can also respond to incoming viral genetic material and how they impact virus growth. Using Herpes Simplex Virus type 1 (HSV-1), we present evidence that DNA repair proteins are activated at the earliest times post-infection, and that they physically accumulate at sites associated with incoming viral genomes. A subset of these DNA repair proteins deposit repressive ubiquitin marks, recruit other DNA repair proteins, and limit transcription from the viral genomes. We demonstrate that the virus overcomes this anti-viral defense by targeting key DNA repair proteins for degradation. Our study adds these DNA repair protein mediators to the list of intrinsic antiviral defense factors active against HSV-1, and demonstrates that many aspects of the cellular recognition of foreign DNA parallel the recognition and response to cellular damage.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Role of histone H2A ubiquitination in Polycomb silencing.

          Covalent modification of histones is important in regulating chromatin dynamics and transcription. One example of such modification is ubiquitination, which mainly occurs on histones H2A and H2B. Although recent studies have uncovered the enzymes involved in histone H2B ubiquitination and a 'cross-talk' between H2B ubiquitination and histone methylation, the responsible enzymes and the functions of H2A ubiquitination are unknown. Here we report the purification and functional characterization of an E3 ubiquitin ligase complex that is specific for histone H2A. The complex, termed hPRC1L (human Polycomb repressive complex 1-like), is composed of several Polycomb-group proteins including Ring1, Ring2, Bmi1 and HPH2. hPRC1L monoubiquitinates nucleosomal histone H2A at lysine 119. Reducing the expression of Ring2 results in a dramatic decrease in the level of ubiquitinated H2A in HeLa cells. Chromatin immunoprecipitation analysis demonstrated colocalization of dRing with ubiquitinated H2A at the PRE and promoter regions of the Drosophila Ubx gene in wing imaginal discs. Removal of dRing in SL2 tissue culture cells by RNA interference resulted in loss of H2A ubiquitination concomitant with derepression of Ubx. Thus, our studies identify the H2A ubiquitin ligase, and link H2A ubiquitination to Polycomb silencing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex.

            The ataxia-telangiectasia mutated (ATM) kinase signals the presence of DNA double-strand breaks in mammalian cells by phosphorylating proteins that initiate cell-cycle arrest, apoptosis, and DNA repair. We show that the Mre11-Rad50-Nbs1 (MRN) complex acts as a double-strand break sensor for ATM and recruits ATM to broken DNA molecules. Inactive ATM dimers were activated in vitro with DNA in the presence of MRN, leading to phosphorylation of the downstream cellular targets p53 and Chk2. ATM autophosphorylation was not required for monomerization of ATM by MRN. The unwinding of DNA ends by MRN was essential for ATM stimulation, which is consistent with the central role of single-stranded DNA as an evolutionarily conserved signal for DNA damage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins.

              Accumulation of repair proteins on damaged chromosomes is required to restore genomic integrity. However, the mechanisms of protein retention at the most destructive chromosomal lesions, the DNA double-strand breaks (DSBs), are poorly understood. We show that RNF8, a RING-finger ubiquitin ligase, rapidly assembles at DSBs via interaction of its FHA domain with the phosphorylated adaptor protein MDC1. This is accompanied by an increase in DSB-associated ubiquitylations and followed by accumulation of 53BP1 and BRCA1 repair proteins. Knockdown of RNF8 or disruption of its FHA or RING domains impaired DSB-associated ubiquitylation and inhibited retention of 53BP1 and BRCA1 at the DSB sites. In addition, we show that RNF8 can ubiquitylate histone H2A and H2AX, and that its depletion sensitizes cells to ionizing radiation. These data suggest that MDC1-mediated and RNF8-executed histone ubiquitylation protects genome integrity by licensing the DSB-flanking chromatin to concentrate repair factors near the DNA lesions.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                June 2011
                June 2011
                16 June 2011
                : 7
                : 6
                : e1002084
                Affiliations
                [1 ]Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
                [2 ]Graduate Program, Division of Biology, University of California, San Diego, California, United States of America
                [3 ]MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
                Cornell University, United States of America
                Author notes

                Conceived and designed the experiments: CEL MSC MDW. Performed the experiments: CEL MSC RDE. Analyzed the data: CEL MSC MDW. Contributed reagents/materials/analysis tools: CB RDE. Wrote the paper: CEL MDW.

                Article
                PPATHOGENS-D-11-00124
                10.1371/journal.ppat.1002084
                3116817
                21698222
                7607a4d9-c636-47b7-b2e3-badc1e0216cd
                Lilley et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 January 2011
                : 11 April 2011
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Microbiology
                Molecular Cell Biology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article