Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans.

      Current Biology
      Animals, Caenorhabditis elegans, anatomy & histology, embryology, genetics, metabolism, Databases, Factual, Female, Gene Expression, Gene Expression Profiling, Gene Library, Genes, Helminth, Helminth Proteins, classification, Morphogenesis, Ovary, physiology, RNA, Helminth, antagonists & inhibitors

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As a step towards comprehensive functional analysis of genomes, systematic gene knockout projects have been initiated in several organisms [1]. In metazoans like C. elegans, however, maternal contribution can mask the effects of gene knockouts on embryogenesis. RNA interference (RNAi) provides an alternative rapid approach to obtain loss-of-function information that can also reveal embryonic roles for the genes targeted [2,3]. We have used RNAi to analyze a random set of ovarian transcripts and have identified 81 genes with essential roles in embryogenesis. Surprisingly, none of them maps on the X chromosome. Of these 81 genes, 68 showed defects before the eight-cell stage and could be grouped into ten phenotypic classes. To archive and distribute these data we have developed a database system directly linked to the C. elegans database (Wormbase). We conclude that screening cDNA libraries by RNAi is an efficient way of obtaining in vivo function for a large group of genes. Furthermore, this approach is directly applicable to other organisms sensitive to RNAi and whose genomes have not yet been sequenced.

          Related collections

          Author and article information

          Comments

          Comment on this article