Search for authorsSearch for similar articles
37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Human papillomavirus immortalization and transformation functions

      ,
      Virus Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The high risk HPVs (such as HPV-16 and HPV-18) that are associated with specific anogenital cancers encode two oncoproteins E6 and E7, which are expressed in the HPV positive cancers. The E7 protein functions in cellular transformation, at least in part, through interactions with pRB and the other pRB related 'pocket proteins'. The major target of the E6 oncoprotein encoded by the genital tract, cancer associated human papillomaviruses is p53. Several lines of evidence suggest that E6 and E7 have additional targets important to the oncogenic potential of the virus. Work from a number of laboratories has focused on determining other activities of HPV relevant to carcinogenesis and identifying additional cellular targets of E6 and E7. This paper will review the state of the field at the time of the 19th International Papillomavirus Workshop in September 2001 with respect to the HPV encoded oncoproteins.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Association of human papillomavirus types 16 and 18 E6 proteins with p53.

          Human papillomavirus type 16 (HPV-16) is a DNA tumor virus that is associated with human anogenital cancers and encodes two transforming proteins, E6 and E7. The E7 protein has been shown to bind to the retinoblastoma tumor suppressor gene product, pRB. This study shows that the E6 protein of HPV-16 is capable of binding to the cellular p53 protein. The ability of the E6 proteins from different human papillomaviruses to form complexes with p53 was assayed and found to correlate with the in vivo clinical behavior and the in vitro transforming activity of these different papillomaviruses. The wild-type p53 protein has tumor suppressor properties and has also been found in association with large T antigen and the E1B 55-kilodalton protein in cells transformed by SV40 and by adenovirus type 5, respectively, providing further evidence that the human papillomaviruses, the adenoviruses, and SV40 may effect similar cellular pathways in transformation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade.

            Ubiquitination of proteins involves the concerted action of the E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzymes and E3 ubiquitin-protein ligases. It has been proposed that E3s function as 'docking proteins', specifically binding substrate proteins and specific E2s, and that ubiquitin is then transferred directly from E2s to substrates. We show here that formation of a ubiquitin thioester on E6-AP, an E3 involved in the human papillomavirus E6-induced ubiquitination of p53 (refs 6-10), is an intermediate step in E6-AP-dependent ubiquitination. The order of ubiquitin transfer is from E1 to E2, from E2 to E6-AP, and finally from E6-AP to a substrate. This cascade of ubiquitin thioester complexes suggests that E3s have a defined enzymatic activity and do not function simply as docking proteins. The cysteine residue of E6-AP responsible for ubiquitin thioester formation was mapped to a region that is highly conserved among several proteins of unknown function, suggesting that these proteins share the ability to form thioesters with ubiquitin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade.

              The E6AP ubiquitin-protein ligase (E3) mediates the human papillomavirus-induced degradation of the p53 tumor suppressor in cervical cancer and is mutated in Angelman syndrome, a neurological disorder. The crystal structure of the catalytic hect domain of E6AP reveals a bilobal structure with a broad catalytic cleft at the junction of the two lobes. The cleft consists of conserved residues whose mutation interferes with ubiquitin-thioester bond formation and is the site of Angelman syndrome mutations. The crystal structure of the E6AP hect domain bound to the UbcH7 ubiquitin-conjugating enzyme (E2) reveals the determinants of E2-E3 specificity and provides insights into the transfer of ubiquitin from the E2 to the E3.
                Bookmark

                Author and article information

                Journal
                Virus Research
                Virus Research
                Elsevier BV
                01681702
                November 2002
                November 2002
                : 89
                : 2
                : 213-228
                Article
                10.1016/S0168-1702(02)00190-9
                12445661
                456b734c-6432-4b63-a01b-2f8b49148fdc
                © 2002

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content5,800

                Cited by150

                Most referenced authors1,078