Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway.

      Molecular Microbiology
      Candida albicans, genetics, physiology, Cell Adhesion, DNA Primers, DNA-Binding Proteins, Endothelium, Vascular, microbiology, Fungal Proteins, metabolism, Gene Expression Regulation, Fungal, Humans, Polymerase Chain Reaction, Restriction Mapping, Saccharomyces cerevisiae, Species Specificity, Transcription Factors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Filamentation and adherence to host cells are critical virulence factors of Candida albicans. Multiple filamentation regulatory pathways have been discovered in C. albicans using Saccharomyces cerevisiae as a model. In S. cerevisiae, these pathways converge on Flo11p, which functions as a downstream effector of filamentation and also mediates cell-cell adherence (flocculation). In C. albicans, such effector(s) have not yet been identified. Here, we demonstrate that the cell surface protein Als1p is an effector of filamentation in C. albicans. We show that Als1p expression is controlled by the transcription factor Efg1p, which is known to be a key regulator of filamentation in C. albicans. Further, disruption of ALS1 inhibited filamentation, and autonomous expression of Als1p restored filamentation in an efg1 homozygous null mutant. Thus, Als1p functions as a downstream effector of the EFG1 filamentation pathway. In addition, we found that Als1p mediates both flocculation and adherence of C. albicans to endothelial cells in vitro. As a cell surface glycoprotein that mediates filamentation and adherence, Als1p has both structural and functional similarity to S. cerevisiae Flo11p. Consistent with our in vitro results, Als1p was required for both normal filamentation and virulence in the mouse model of haematogenously disseminated candidiasis.

          Related collections

          Author and article information

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content401

          Cited by47