31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death

      research-article
      The Journal of Experimental Medicine
      The Rockefeller University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Programmed cell death (PCD) is a physiological process commonly defined by alterations in nuclear morphology (apoptosis) and/or characteristic stepwise degradation of chromosomal DNA occurring before cytolysis. However, determined characteristics of PCD such as loss in mitochondrial reductase activity or cytolysis can be induced in enucleated cells, indicating cytoplasmic PCD control. Here we report a sequential disregulation of mitochondrial function that precedes cell shrinkage and nuclear fragmentation. A first cyclosporin A-inhibitable step of ongoing PCD is characterized by a reduction of mitochondrial transmembrane potential, as determined by specific fluorochromes (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine++ + iodide; 3,3'dihexyloxacarbocyanine iodide). Cytofluorometrically purified cells with reduced mitochondrial transmembrane potential are initially incapable of oxidizing hydroethidine (HE) into ethidium. Upon short-term in vitro culture, such cells acquire the capacity of HE oxidation, thus revealing a second step of PCD marked by mitochondrial generation of reactive oxygen species (ROS). This step can be selectively inhibited by rotenone and ruthenium red yet is not affected by cyclosporin A. Finally, cells reduce their volume, a step that is delayed by radical scavengers, indicating the implication of ROS in the apoptotic process. This sequence of alterations accompanying early PCD is found in very different models of apoptosis induction: glucocorticoid-induced death of lymphocytes, activation-induced PCD of T cell hybridomas, and tumor necrosis factor-induced death of U937 cells. Transfection with the antiapoptotic protooncogene Bcl-2 simultaneously inhibits mitochondrial alterations and apoptotic cell death triggered by steroids or ceramide. In vivo injection of fluorochromes such as 5,5',6,6'-tetrachloro-1,1',3,3'- tetraethylbenzimidazolcarbocyanine iodide; 3,3'dihexyloxacarbocyanine iodide; or HE allows for the detection of cells that are programmed for death but still lack nuclear DNA fragmentation. In particular, assessment of mitochondrial ROS generation provides an accurate picture of PCD-mediated lymphocyte depletion. In conclusion, alterations of mitochondrial function constitute an important feature of early PCD.

          Related collections

          Author and article information

          Journal
          J Exp Med
          The Journal of Experimental Medicine
          The Rockefeller University Press
          0022-1007
          1540-9538
          1 August 1995
          : 182
          : 2
          : 367-377
          Article
          95355836
          10.1084/jem.182.2.367
          2192111
          7629499
          4302fd6a-d406-40bb-a1ce-e57fd9d62a01
          History
          Categories
          Articles

          Medicine
          Medicine

          Comments

          Comment on this article