Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mucosa-associated lymphoid tissue (MALT) lymphomas most frequently involve the gastrointestinal tract and are the most common subset of extranodal non-Hodgkin lymphoma (NHL). Here we describe overexpression of BCL10, a novel apoptotic signalling gene that encodes an amino-terminal caspase recruitment domain (CARD), in MALT lymphomas due to the recurrent t(1;14)(p22;q32). BCL10 cDNAs from t(1;14)-positive MALT tumours contained a variety of mutations, most resulting in truncations either in or carboxy terminal to the CARD. Wild-type BCL10 activated NF-kappaB but induced apoptosis of MCF7 and 293 cells. CARD-truncation mutants were unable to induce cell death or activate NF-kappaB, whereas mutants with C-terminal truncations retained NF-kappaB activation but did not induce apoptosis. Mutant BCL10 overexpression might have a twofold lymphomagenic effect: loss of BCL10 pro-apoptosis may confer a survival advantage to MALT B-cells, and constitutive NF-kappaB activation may provide both anti-apoptotic and proliferative signals mediated via its transcriptional targets.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation.

          Tumor necrosis factor alpha (TNF-alpha) binding to the TNF receptor (TNFR) potentially initiates apoptosis and activates the transcription factor nuclear factor kappa B (NF-kappaB), which suppresses apoptosis by an unknown mechanism. The activation of NF-kappaB was found to block the activation of caspase-8. TRAF1 (TNFR-associated factor 1), TRAF2, and the inhibitor-of-apoptosis (IAP) proteins c-IAP1 and c-IAP2 were identified as gene targets of NF-kappaB transcriptional activity. In cells in which NF-kappaB was inactive, all of these proteins were required to fully suppress TNF-induced apoptosis, whereas c-IAP1 and c-IAP2 were sufficient to suppress etoposide-induced apoptosis. Thus, NF-kappaB activates a group of gene products that function cooperatively at the earliest checkpoint to suppress TNF-alpha-mediated apoptosis and that function more distally to suppress genotoxic agent-mediated apoptosis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            NF-κB: Ten Years After

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types.

              MALT B cell lymphomas with t(1;14)(p22;q32) showed a recurrent breakpoint upstream of the promoter of a novel gene, Bcl10. Bcl10 is a cellular homolog of the equine herpesvirus-2 E10 gene: both contain an amino-terminal caspase recruitment domain (CARD) homologous to that found in several apoptotic molecules. Bcl10 and E10 activated NF-kappaB but caused apoptosis of 293 cells. Bcl10 expressed in a MALT lymphoma exhibited a frameshift mutation resulting in truncation distal to the CARD. Truncated Bcl10 activated NF-kappaB but did not induce apoptosis. Wild-type Bcl10 suppressed transformation, whereas mutant forms had lost this activity and displayed gain-of-function transforming activity. Similar mutations were detected in other tumor types, indicating that Bcl10 may be commonly involved in the pathogenesis of human malignancy.
                Bookmark

                Author and article information

                Journal
                Nature Genetics
                Nat Genet
                Springer Science and Business Media LLC
                1061-4036
                1546-1718
                May 1999
                May 1999
                : 22
                : 1
                : 63-68
                Article
                10.1038/8767
                10319863
                4010fe10-5bfa-4833-b265-fa6a610c1e44
                © 1999

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,194

                Cited by34

                Most referenced authors278