Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
285
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disintegration of wheat aleurone structure has an impact on the bioavailability of phenolic compounds and other phytochemicals as evidenced by altered urinary metabolite profile of diet-induced obese mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Phenolic acids are covalently bound to the arabinoxylan fibre matrix of wheat aleurone layer. In order to be bioavailable they need to be released by endogenous or bacterial enzymes and absorbed within the intestinal lumen. The intestinal microbiota can metabolize phenolic acids and other food-born phytochemicals. However, the effect of structure of the cereal bran or aleurone layer on these processes is not comprehensively studied.

          Methods

          The structure of aleurone layer was modified either by dry-grinding or by enzymatic treatments with xylanase alone or in combination with feruloyl esterase. Diet induced obese C57BL6/J mice were fed with high-fat diets containing either pure ferulic acid, or one of the four differentially treated aleurone preparations for 8 weeks. The diets were designed to be isocaloric and to have similar macronutrient composition. The urinary metabolite profiles were investigated using non-targeted LC-qTOF-MS-metabolomics approach.

          Results

          The different dietary groups were clearly separated in the principal component analysis. Enzymatic processing of aleurone caused increased excretion of ferulic acid sulfate and glycine conjugates reflecting the increase in unbound form of readily soluble ferulic acid in the diet. The urinary metabolite profile of the diet groups containing native and cryo-ground aleurone was more intense with metabolites derived from microbial processing including hippuric acid, hydroxyl- and dihydroxyphenylpropionic acids. Furthermore, aleurone induced specific fingerprint on the urinary metabolite profile seen as excretion of benzoxazinoid metabolites, several small dicarboyxlic acids, and various small nitrogen containing compounds.

          Conclusions

          The structural modifications on wheat aleurone fraction resulted in altered metabolism of aleurone derived phenolic acids and other phytochemicals excreted in urine of diet-induced obese mice.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Prebiotic Effects of Wheat Arabinoxylan Related to the Increase in Bifidobacteria, Roseburia and Bacteroides/Prevotella in Diet-Induced Obese Mice

          Background Alterations in the composition of gut microbiota - known as dysbiosis - has been proposed to contribute to the development of obesity, thereby supporting the potential interest of nutrients targeting the gut with beneficial effect for host adiposity. We test the ability of a specific concentrate of water-extractable high molecular weight arabinoxylans (AX) from wheat to modulate both the gut microbiota and lipid metabolism in high-fat (HF) diet-induced obese mice. Methodology/Principal Findings Mice were fed either a control diet (CT) or a HF diet, or a HF diet supplemented with AX (10% w/w) during 4 weeks. AX supplementation restored the number of bacteria that were decreased upon HF feeding, i.e. Bacteroides-Prevotella spp. and Roseburia spp. Importantly, AX treatment markedly increased caecal bifidobacteria content, in particular Bifidobacterium animalis lactis. This effect was accompanied by improvement of gut barrier function and by a lower circulating inflammatory marker. Interestingly, rumenic acid (C18:2 c9,t11) was increased in white adipose tissue due to AX treatment, suggesting the influence of gut bacterial metabolism on host tissue. In parallel, AX treatment decreased adipocyte size and HF diet-induced expression of genes mediating differentiation, fatty acid uptake, fatty acid oxidation and inflammation, and decreased a key lipogenic enzyme activity in the subcutaneous adipose tissue. Furthermore, AX treatment significantly decreased HF-induced adiposity, body weight gain, serum and hepatic cholesterol accumulation and insulin resistance. Correlation analysis reveals that Roseburia spp. and Bacteroides/Prevotella levels inversely correlate with these host metabolic parameters. Conclusions/Significance Supplementation of a concentrate of water-extractable high molecular weight AX in the diet counteracted HF-induced gut dysbiosis together with an improvement of obesity and lipid-lowering effects. We postulate that hypocholesterolemic, anti-inflammatory and anti-obesity effects are related to changes in gut microbiota. These data support a role for wheat AX as interesting nutrients with prebiotic properties related to obesity prevention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: identification of biomarkers of coffee consumption.

            Human subjects drank coffee containing 412 mumol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by high-performance liquid chromatography-mass spectrometry. Within 1 h, some of the components in the coffee reached nanomole peak plasma concentrations (C(max)), whereas chlorogenic acid metabolites, including caffeic acid-3-O-sulfate and ferulic acid-4-O-sulfate and sulfates of 3- and 4-caffeoylquinic acid lactones, had higher C(max) values. The short time to reach C(max) (T(max)) indicates absorption of these compounds in the small intestine. In contrast, dihydroferulic acid, its 4-O-sulfate, and dihydrocaffeic acid-3-O-sulfate exhibited much higher C(max) values (145-385 nM) with T(max) values in excess of 4 h, indicating absorption in the large intestine and the probable involvement of catabolism by colonic bacteria. These three compounds, along with ferulic acid-4-O-sulfate and dihydroferulic acid-4-O-glucuronide, were also major components to be excreted in urine (8.4-37.1 mumol) after coffee intake. Feruloylglycine, which is not detected in plasma, was also a major urinary component (20.7 mumol excreted). Other compounds, not accumulating in plasma but excreted in smaller quantities, included the 3-O-sulfate and 3-O-glucuronide of isoferulic acid, dihydro(iso)ferulic acid-3-O-glucuronide, and dihydrocaffeic acid-3-O-glucuronide. Overall, the 119.9 mumol excretion of the chlorogenic acid metabolites corresponded to 29.1% of intake, indicating that as well as being subject to extensive metabolism, chlorogenic acids in coffee are well absorbed. Pathways for the formation of the various metabolites within the body are proposed. Urinary dihydrocaffeic acid-3-O-sulfate and feruloylglycine are potentially very sensitive biomarkers for the consumption of relatively small amounts of coffee.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice

              Background: Alterations in the composition of gut microbiota —known as dysbiosis— have been proposed to contribute to the development of obesity, thereby supporting the potential interest of nutrients acting on the gut microbes to produce beneficial effect on host energetic metabolism. Non-digestible fermentable carbohydrates present in cereals may be interesting nutrients able to influence the gut microbiota composition. Objective and design: The aim of the present study was to test the prebiotic potency of arabinoxylan oligosaccharides (AXOS) prepared from wheat bran in a nutritional model of obesity, associated with a low-grade chronic systemic inflammation. Mice were fed either a control diet or a high fat (HF) diet, or a HF diet supplemented with AXOS during 8 weeks. Results: AXOS supplementation induced caecal and colon enlargement associated with an important bifidogenic effect. It increased the level of circulating satietogenic peptides produced by the colon (peptide YY and glucagon-like peptide-1), and coherently counteracted HF-induced body weight gain and fat mass development. HF-induced hyperinsulinemia and the Homeostasis Model Assessment of insulin resistance were decreased upon AXOS feeding. In addition, AXOS reduced HF-induced metabolic endotoxemia, macrophage infiltration (mRNA of F4/80) in the adipose tissue and interleukin 6 (IL6) in the plasma. The tight junction proteins (zonula occludens 1 and claudin 3) altered upon HF feeding were upregulated by AXOS treatment suggesting that the lower inflammatory tone was associated with the improvement of gut barrier function. Conclusion: Together, these findings suggest that specific non-digestible carbohydrates produced from cereals such as AXOS constitute a promising prebiotic nutrient in the control of obesity and related metabolic disorders.
                Bookmark

                Author and article information

                Journal
                Nutr Metab (Lond)
                Nutr Metab (Lond)
                Nutrition & Metabolism
                BioMed Central
                1743-7075
                2014
                2 January 2014
                : 11
                : 1
                Affiliations
                [1 ]Institute of Public Health and Clinical Nutrition, Clinical Nutrition, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, Kuopio FI-70211, Finland
                [2 ]JRU Agropolymers Engineering and Emerging Technologies (IATE 1208) SupAgro-INRA-UM2-CIRAD, 2 Place Pierre Viala, Montpellier cedex 1 34060, France
                [3 ]VTT Technical Research Centre of Finland, Espoo, Finland
                Article
                1743-7075-11-1
                10.1186/1743-7075-11-1
                3891979
                24383425
                3b2e32ca-db2c-44c3-93a1-3e7ac7c020ee
                Copyright © 2014 Pekkinen et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 11 October 2013
                : 24 December 2013
                Categories
                Research

                Nutrition & Dietetics
                lc-ms,non-targeted metabolomics,metabolite profiling,arabinoxylan,microbial metabolism,ferulic acid

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content159

                Cited by32