Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bax and Bak play a redundant but essential role in apoptosis initiated by the mitochondrial release of apoptogenic factors. In addition to their presence at the mitochondrial outer membrane, Bax and Bak can also localize to the ER. Agents that initiate ER stress responses can induce conformational changes and oligomerization of Bax on the ER as well as on mitochondria. In wild-type cells, this is associated with caspase 12 cleavage that is abolished in bax / bak / cells. In bax / bak / cells, introduction of Bak mutants selectively targeted to either mitochondria or the ER can induce apoptosis. However, ER-targeted, but not mitochondria-targeted, Bak leads to progressive depletion of ER Ca 2+ and induces caspase 12 cleavage. In contrast, mitochondria-targeted Bak leads to enhanced caspase 7 and PARP cleavage in comparison with the ER-targeted Bak. These findings demonstrate that in addition to their functions at mitochondria, Bax and Bak also localize to the ER and function to initiate a parallel pathway of caspase activation and apoptosis.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          RADIOAUTOGRAPHIC STUDIES OF CHOLINE INCORPORATION INTO PERIPHERAL NERVE MYELIN

          This radioautographic study was designed to localize the cytological sites involved in the incorporation of a lipid precursor into the myelin and the myelin-related cell of the peripheral nervous system. Both myelinating and fully myelinated cultures of rat dorsal root ganglia were exposed to a 30-min pulse of tritiated choline and either fixed immediately or allowed 6 or 48 hr of chase incubation before fixation. After Epon embedding, light and electron microscopic radioautograms were prepared with Ilford L-4 emulsion. Analysis of the pattern of choline incorporation into myelinating cultures indicated that radioactivity appeared all along the length of the internode, without there being a preferential site of initial incorporation. Light microscopic radioautograms of cultures at varying states of maturity were compared in order to determine the relative degree of myelin labeling. This analysis indicated that the myelin-Schwann cell unit in the fully myelinated cultures incorporated choline as actively as did this unit in the myelinating cultures. Because of technical difficulties, it was not possible to determine the precise localization of the incorporated radioactivity within the compact myelin. These data are related to recent biochemical studies indicating that the mature myelin of the central nervous system does incorporate a significant amount of lipid precursor under the appropriate experimental conditions. These observations support the concept that a significant amount of myelin-related metabolic activity occurs in mature tissue; this activity is considered part of an essential and continuous process of myelin maintenance and repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis.

            We report here that BID, a BH3 domain-containing proapoptotic Bcl2 family member, is a specific proximal substrate of Casp8 in the Fas apoptotic signaling pathway. While full-length BID is localized in cytosol, truncated BID (tBID) translocates to mitochondria and thus transduces apoptotic signals from cytoplasmic membrane to mitochondria. tBID induces first the clustering of mitochondria around the nuclei and release of cytochrome c independent of caspase activity, and then the loss of mitochondrial membrane potential, cell shrinkage, and nuclear condensation in a caspase-dependent fashion. Coexpression of BclxL inhibits all the apoptotic changes induced by tBID. Our results indicate that BID is a mediator of mitochondrial damage induced by Casp8.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death.

              Bcl-2 protein is able to repress a number of apoptotic death programs. To investigate the mechanism of Bcl-2's effect, we examined whether Bcl-2 interacted with other proteins. We identified an associated 21 kd protein partner, Bax, that has extensive amino acid homology with Bcl-2, focused within highly conserved domains I and II. Bax is encoded by six exons and demonstrates a complex pattern of alternative RNA splicing that predicts a 21 kd membrane (alpha) and two forms of cytosolic protein (beta and gamma). Bax homodimerizes and forms heterodimers with Bcl-2 in vivo. Overexpressed Bax accelerates apoptotic death induced by cytokine deprivation in an IL-3-dependent cell line. Overexpressed Bax also counters the death repressor activity of Bcl-2. These data suggest a model in which the ratio of Bcl-2 to Bax determines survival or death following an apoptotic stimulus.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                7 July 2003
                : 162
                : 1
                : 59-69
                Affiliations
                [1 ]Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104
                [2 ]Department of Pathology and Laboratory Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104
                [3 ]Department of Cell Biology, Harvard Medical School, Boston, MA 02115
                Author notes

                Address correspondence to Craig B. Thompson, Department of Cancer Biology, Abramson Cancer Center, 421 Curie Blvd., BRB II/III, 445, Philadelphia, PA 19104-6160. Tel.: (215) 746-5515. Fax: (215) 746-5511. E-mail: craig@ 123456mail.med.upenn.edu

                Article
                200302084
                10.1083/jcb.200302084
                2172724
                12847083
                2d94a0d1-3e52-4603-b4aa-4cebdec9e75f
                Copyright © 2003, The Rockefeller University Press
                History
                : 14 February 2003
                : 13 May 2003
                : 23 May 2003
                Categories
                Article

                Cell biology
                bak; bax; ca2+; caspase 12; er
                Cell biology
                bak; bax; ca2+; caspase 12; er

                Comments

                Comment on this article