Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter.

      The Plant cell
      Amino Acid Motifs, Amino Acid Sequence, Arabidopsis, genetics, metabolism, Arabidopsis Proteins, Base Sequence, Binding Sites, Chloroplasts, DNA Primers, Genes, Plant, Genetic Complementation Test, Hydrolysis, Molecular Sequence Data, Monosaccharide Transport Proteins, Mutation, Phosphorylation, Plant Proteins, chemistry, Sequence Homology, Amino Acid, Starch

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Starch is the major storage carbohydrate in higher plants and of considerable importance for the human diet and for numerous technical applications. In addition, starch can be accumulated transiently in chloroplasts as a temporary deposit of carbohydrates during ongoing photosynthesis. This transitory starch has to be mobilized during the subsequent dark period. Mutants defective in starch mobilization are characterized by high starch contents in leaves after prolonged periods of darkness and therefore are termed starch excess (sex) mutants. Here we describe the molecular characterization of the Arabidopsis sex1 mutant that has been proposed to be defective in the export of glucose resulting from hydrolytic starch breakdown. The mutated gene in sex1 was cloned using a map-based cloning approach. By complementation of the mutant, immunological analysis, and analysis of starch phosphorylation, we show that sex1 is defective in the Arabidopsis homolog of the R1 protein and not in the hexose transporter. We propose that the SEX1 protein (R1) functions as an overall regulator of starch mobilization by controlling the phosphate content of starch.

          Related collections

          Author and article information

          Comments

          Comment on this article