Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular characterization and expression of the gene encoding human erythroid-potentiating activity.

      Nature
      Animals, Base Sequence, Cells, Cultured, Cloning, Molecular, Cricetinae, Cricetulus, DNA, Genes, Hematopoiesis, Humans, Lymphokines, genetics, metabolism, Molecular Sequence Data, Nucleic Acid Hybridization, Tissue Inhibitor of Metalloproteinases

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Erythropoietin is the primary physiological regulator of erythropoiesis; however, in vitro studies have identified another class of mediators which appear to be important in stimulating erythroid progenitors. These factors have generally been referred to as burst-promoting activities (BPA), because they stimulate the growth of early erythroid progenitors referred to as burst-forming units-erythroid (BFU-E) which give rise to colonies of up to thousands of haemoglobinized cells. We recently reported purification of a burst-promoting activity from medium conditioned by the Mo T-lymphoblast cell line infected with human T-cell lymphotropic virus type II (HTLV-II). This purified glycoprotein of relative molecular mass (Mr) 28,000 also stimulates colony formation by more mature erythroid precursors (CFU-E) and is therefore referred to as erythroid-potentiating activity (EPA). Purified EPA specifically stimulates human and murine cells of the erythroid lineage, unlike murine interleukin-3 (IL-3) which stimulates precursor cells from all haematopoietic lineages. We report here the isolation of a complementary DNA molecular clone encoding EPA and its use in producing EPA in COS (monkey) cells and CHO (Chinese hamster ovary) cells. We also define the organization of the EPA gene in human DNA.

          Related collections

          Author and article information

          Comments

          Comment on this article