Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Lysophospholipids in the limelight : autotaxin takes center stage

      editorial
      The Journal of Cell Biology
      The Rockefeller University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lysophosphatidic acid (LPA) is a serum phospholipid that evokes growth factor–like responses in many cell types through the activation of its G protein–coupled receptors. Although much is known about LPA signaling, it has remained unclear where and how bioactive LPA is produced. Umezu-Goto et al. (2002)(this issue, page 227) have purified a serum lysophospholipase D that generates LPA from lysophosphatidylcholine and found it to be identical to autotaxin, a cell motility–stimulating ectophosphodiesterase implicated in tumor progression. This result is surprising, as there was previously no indication that autotaxin could act as a phospholipase.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Rho GTPases Control Polarity, Protrusion, and Adhesion during Cell Movement

          Cell movement is essential during embryogenesis to establish tissue patterns and to drive morphogenetic pathways and in the adult for tissue repair and to direct cells to sites of infection. Animal cells move by crawling and the driving force is derived primarily from the coordinated assembly and disassembly of actin filaments. The small GTPases, Rho, Rac, and Cdc42, regulate the organization of actin filaments and we have analyzed their contributions to the movement of primary embryo fibroblasts in an in vitro wound healing assay. Rac is essential for the protrusion of lamellipodia and for forward movement. Cdc42 is required to maintain cell polarity, which includes the localization of lamellipodial activity to the leading edge and the reorientation of the Golgi apparatus in the direction of movement. Rho is required to maintain cell adhesion during movement, but stress fibers and focal adhesions are not required. Finally, Ras regulates focal adhesion and stress fiber turnover and this is essential for cell movement. We conclude that the signal transduction pathways controlled by the four small GTPases, Rho, Rac, Cdc42, and Ras, cooperate to promote cell movement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production

            Autotaxin (ATX) is a tumor cell motility–stimulating factor, originally isolated from melanoma cell supernatants. ATX had been proposed to mediate its effects through 5′-nucleotide pyrophosphatase and phosphodiesterase activities. However, the ATX substrate mediating the increase in cellular motility remains to be identified. Here, we demonstrated that lysophospholipase D (lysoPLD) purified from fetal bovine serum, which catalyzes the production of the bioactive phospholipid mediator, lysophosphatidic acid (LPA), from lysophosphatidylcholine (LPC), is identical to ATX. The Km value of ATX for LPC was 25-fold lower than that for the synthetic nucleoside substrate, p-nitrophenyl-tri-monophosphate. LPA mediates multiple biological functions including cytoskeletal reorganization, chemotaxis, and cell growth through activation of specific G protein–coupled receptors. Recombinant ATX, particularly in the presence of LPC, dramatically increased chemotaxis and proliferation of multiple different cell lines. Moreover, we demonstrate that several cancer cell lines release significant amounts of LPC, a substrate for ATX, into the culture medium. The demonstration that ATX and lysoPLD are identical suggests that autocrine or paracrine production of LPA contributes to tumor cell motility, survival, and proliferation. It also provides potential novel targets for therapy of pathophysiological states including cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lysophosphatidic acid receptors.

              Lysophosphatidic acid (LPA) is a simple bioactive phospholipid with diverse physiological actions on many cell types. LPA induces proliferative and/or morphological effects and has been proposed to be involved in biologically important processes including neurogenesis, myelination, angiogenesis, wound healing, and cancer progression. LPA acts through specific G protein-coupled, seven-transmembrane domain receptors. To date, three mammalian cognate receptor genes, lp(A1)/vzg-1/Edg2, lp(A2)/Edg4, and lp(A3)/Edg7, have been identified that encode high-affinity LPA receptors. Here, we review current knowledge on these LPA receptors, including their isolation, function, expression pattern, gene structure, chromosomal location, and possible physiological or pathological roles.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                22 July 2002
                : 158
                : 2
                : 197-199
                Affiliations
                Division of Cellular Biochemistry and Centre for Biomedical Genetics, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
                Author notes

                Address correspondence to Wouter H. Moolenaar, Division of Cellular Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands. Tel.: 31-20-512-1971. Fax: 31-20-512-1989. E-mail: w.moolenaar@ 123456nki.nl

                Article
                200206094
                10.1083/jcb.200206094
                2173118
                12135981
                1959593f-f2cd-4208-b954-a8634b54ee9e
                Copyright © 2002, The Rockefeller University Press
                History
                : 20 June 2002
                : 27 June 2002
                Categories
                Comment

                Cell biology
                Cell biology

                Comments

                Comment on this article