Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Single-amino-acid mutation in the HA alters the recognition of H9N2 influenza virus by a monoclonal antibody

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We explored the molecular basis of antigenic variation by comparing two H9N2 subtype avian influenza viruses, A/Chicken/Shandong/6/96 (CK/SD/6) and A/Chicken/Guangxi/10/99 (CK/GX/10), that react differently to a monoclonal antibody C/B3. To assess the genetic basis for this antigenic difference, we used reverse genetics to generate a series of chimera and mutants of these two viruses. We found that a single-amino-acid substitution of asparagine for serine at position 145 (S145N) in the HA protein prevents the reaction of CK/SD/6 virus with C/B3. Substitution of serine for asparagine at the same position (N145S) enables the CK/GX/10 to react with C/B3 in hemaglutinin inhibition, immunofluorescence and neutralization assays. We further demonstrated that the amino acid N145 in the H9 HA protein is glycosylated. Our results provide experimental evidence that the glycosylation of HA oligosaccharide attachment sites implicated in antibody binding could have a role in antigenic variation.

          Related collections

          Author and article information

          Journal
          Biochemical and Biophysical Research Communications
          Biochemical and Biophysical Research Communications
          Elsevier BV
          0006291X
          June 2008
          June 2008
          : 371
          : 1
          : 168-171
          Article
          10.1016/j.bbrc.2008.04.045
          18424263
          0b011738-028a-4a59-a348-e3fcff5f1bf5
          © 2008

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content2,615

          Cited by18